1. MySQL Connector/J

MySQL provides connectivity for client applications devel oped in the Java programming language via a
JDBC driver, which is called MySQL Connector/J.

MySQL Connector/Jis a JDBC-3.0 Type 4 driver, which meansthat is pure Java, implements version
3.0 of the IDBC specification, and communicates directly with the MySQL server using the MySQL
protocol.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after read-
ing the first few sections of this manual, that you would avoid using naked JDBC for all but the most
trivial problems and consider using one of the popular persistence frameworks such as Hibernate
[http://www.hibernate.org/], Spring's IDBC templates [http://www.springframework.org/] or Ibatis SQL
Maps [http://ibatis.apache.org/] to do the majority of repetitive work and heavier lifting that is some-
times required with JDBC.

This section is not designed to be a complete JDBC tutorial. If you need more information about using

JDBC you might be interested in the following online tutorials that are more in-depth than the informa-
tion presented here:

» JDBC Basics [http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html] — A tutoria from
Sun covering beginner topicsin JDBC
» JDBC Short Course

[http://java.sun.com/devel oper/onlineTraining/Database/ IDBCShortCourse/index.html] — A more
in-depth tutorial from Sun and JGuru

1.1. Connector/J Versions

There are currently three versions of MySQL Connector/J available:

» Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or
MySQL 4.1 servers, athough it will provide basic compatibility with later versions of MySQL. Con-
nector/J 3.0 does not support server-side prepared statements, and does not support any of the fea-
turesin versions of MySQL later than 4.1.

» Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides
support for al the functionality in MySQL 5.0 except distributed transaction (XA) support.

e Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes
distributed transaction (XA) support.

The current recommended version for Connector/Jis 5.0. This guide covers all three connector versions,
with specific notes given where a setting applies to a specific option.

1.1.1. Java Versions Supported

MySQL Connector/J supports Java-2 JVMs, including:

e JDK 1.2 (only for Connector/J 3.1.x or earlier)
e« JDK 1.3x

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

MySQL Connector/J

« JDK 14x

+ JDK 15X

If you are building Connector/J from source using the source distribution (see Section 1.2.4, “Installing
from the Development Source Tree”) then you must use JDK 1.4.x or newer to compiler the Connector
package.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

Because of the implementation of j ava. sql . Savepoi nt, Connector/J 3.1.0 and newer will not run
on JDKs older than 1.4 unless the class verifier is turned off (by setting the- Xveri f y: none option to
the Javaruntime). Thisis because the class verifier will try to load the class definition for

j ava. sqgl . Savepoi nt eventhough it isnot accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than
14x,asitreliesonj ava. uti | . Li nkedHashMap which wasfirst availablein JDK-1.4.0.

1.2. Connector/J Installation

Y ou can install the Connector/J package using two methods, using either the binary or source distribu-
tion. The binary distribution provides the easiest methods for installation; the source distribution enables
you to customize your installation further. With either solution, you must manually add the Connector/J
location to your Java CLASSPATH.

1.2.1. Installing Connector/J from a Binary Distribution

The easiest method of installation is to use the binary distribution of the Connector/J package. The bin-
ary distribution is available either as a Tar/Gzip or Zip file which you must extract to a suitable location
and then optionally make the information about the package available by changing your CLASSPATH
(see Section 1.2.2, “Installing the Driver and Configuring the CLASSPATH").

MySQL Connector/Jis distributed as a.zip or .tar.gz archive containing the sources, the classfiles, and
the JAR archive named nysql - connect or - j ava- [ver si on] - bi n. j ar, and starting with Con-
nector/J 3.1.8 adebug build of the driver in afilenamed mysql - connect or-j ava- [versi on] -
bin-g.jar.

Starting with Connector/J 3.1.9, the . cl ass filesthat constitute the JAR files are only included as part
of the driver JAR file.

Y ou should not use the debug build of the driver unless instructed to do so when reporting a problem ors
bug to MySQL AB, asit is not designed to be run in production environments, and will have adverse
performance impact when used. The debug binary also depends on the Aspect/J runtime library, which
islocated inthesrc/ | i b/ aspectjrt.jar filethat comeswith the Connector/J distribution.

Y ou will need to use the appropriate graphical or command-line utility to un-archive the distribution (for
example, WinZip for the .zip archive, and t ar for the .tar.gz archive). Because there are potentially
long filenames in the distribution, we use the GNU tar archive format. Y ou will need to use GNU tar (or
an application that understands the GNU tar archive format) to unpack the .tar.gz variant of the distribu-
tion.

1.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql -
connector-java-[version]-bin.jar inyour classpath, either by adding the full path to it to

MySQL Connector/J

your CLASSPATH environment variable, or by directly specifying it with the command line switch -cp
when starting your VM.

If you are going to use the driver with the JDBC DriverManager, you would use
com nysql . j dbc. Dri ver asthe classthat implements java.sgl.Driver.

Y ou can set the CLASSPATH environment variableunder UNIX, Linux or Mac OS X either locally for a
user within their . profi | e,. | ogi n or other login file. You can also set it globally by editing the
global / et c/ profil efile.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH us-
ing the following:

shel | > set env CLASSPATH / pat h/ nysql - connect or-j ava-[ver]-bi n. j ar: SCLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

export set CLASSPATH=/ pat h/ mysql - connector-java-[ver]-bin.jar: $CLASSPATH

Within Windows 2000, Windows X P and Windows Server 2003, you must set the environment variable
through the System control panel.

If you want to use MySQL Connector/J with an application server such as Tomcat or JBoss, you will
have to read your vendor's documentation for more information on how to configure third-party class
libraries, as most application serversignore the CLASSPATH environment variable. For configuration
examples for some J2EE application servers, see Section 1.5.2, “Using Connector/J with J2EE and Other
Java Frameworks’. However, the authoritative source for JDBC connection pool configuration informa-
tion for your particular application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's .jar filein the WEB-INF/lib subdirectory of your webapp, asthisis a standard location for third
party class libraries in J2EE web applications.

Y ou can a'so use the MysglDataSource or Mysgl ConnectionPool DataSource classes in the

com nysql . j dbc. j dbc2. opti onal package, if your J2EE application server supports or re-
quires them. Starting with Connector/J 5.0.0, thej avax. sql . XADat aSour ce interfaceisimple-
mented viathecom nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce class, which sup-
ports XA distributed transactions when used in combination with MySQL server version 5.0.

The various MysglDataSource classes support the following parameters (through standard set mutators):

* user

e password

» serverName (see the previous section about fail-over hosts)
+ databaseName

« port

1.2.3. Upgrading from an Older Version

MySQL AB triesto keep the upgrade process as easy as possible, however as is the case with any soft-
ware, sometimes changes need to be made in new versions to support new features, improve existing
functionality, or comply with new standards.

MySQL Connector/J

This section has information about what users who are upgrading from one version of Connector/Jto an-
other (or to anew version of the MySQL server, with respect to JDBC functionality) should be aware of.

1.2.3.1. Upgrading from MySQL Connector/J 3.0to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major
changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes Unicode
character sets, server-side prepared statements, SQL State codes returned in error messages by the server
and various performance enhancements that can be enabled or disabled via configuration properties.

* Unicode Character Sets— See the next section, as well as Character Set Support
[http://dev.mysgl.com/doc/refman/5.0/en/charset.html], for information on this new feature of
MySQL. If you have something misconfigured, it will usually show up as an error with a message
similartol | | egal m x of collations.

* Server-side Prepared Statements— Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing viaall variants of Connec-
tion. prepareStatenent () todetermineif it isasupported type of statement to prepare on
the server side, and if it is not supported by the server, it instead preparesit as a client-side emulated
prepared statement. Y ou can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the
older client-side emulated prepared statement code that is still presently used for MySQL servers
older than 4.1.0 with the connection property useServerPrepStmts=false

» Datetimeswith all-zero components (0000- 00- 00 . ..) — These values can not be represented
reliably in Java. Connector/J 3.0.x always converted them to NULL when being read from a Result-
Set.

Connector/J 3.1 throws an exception by default when these values are encountered as thisis the most
correct behavior according to the JDBC and SQL standards. This behavior can be modified using the
zeroDateTimeBehavior configuration property. The allowable values are;

e excepti on (the default), which throws an SQL Exception with an SQL State of S1009.
e convert ToNul |, which returns NULL instead of the date.
¢ round, which rounds the date to the nearest closest value whichis0001- 01- 01.

Starting with Connector/J 3.1.7, Resul t Set . get St ri ng() can be decoupled from this behavior
via noDatetimeStringSync=true (the default value isf al se) so that you can get retrieve the un-
altered all-zero value as a String. It should be noted that this also precludes using any time zone con-
versions, therefore the driver will not allow you to enable noDatetimeStringSync and useTimezone
at the same time.

* New SQL State Codes — Connector/J 3.1 uses SQL :1999 SQL State codes returned by the MySQL
server (if supported), which are different from the legacy X/Open state codes that Connector/J 3.0
uses. If connected to aMySQL server older than MySQL-4.1.0 (the oldest version to return SQL -
States as part of the error code), the driver will use a built-in mapping. Y ou can revert to the old
mapping by using the configuration property useSql StateCodes=fal se.

* ResultSet.getString() —CalingResult Set.get String() onaBLOB column will
now return the address of the byte[] array that representsit, instead of a String representation of the
BLOB. BLOBs have no character set, so they can't be converted to java.lang.Strings without data
loss or corruption.

http://dev.mysql.com/doc/refman/5.0/en/charset.html

MySQL Connector/J

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will
treat as ajava.sgl.Clob.

» Debug builds— Starting with Connector/J 3.1.8 a debug build of the driver in afile named
nysql - connect or - j ava- [ver si on] - bi n-g. j ar isshipped alongside the normal binary
jar filethat isnamed mysql - connect or-j ava-[version]-bin.jar.

Starting with Connector/J 3.1.9, we don't ship the .class files unbundled, they are only availablein
the JAR archives that ship with the driver.

Y ou should not use the debug build of the driver unless instructed to do so when reporting a problem
or bug to MySQL AB, asit is not designed to be run in production environments, and will have ad-
verse performance impact when used. The debug binary also depends on the Aspect/J runtime lib-
rary, whichislocatedinthesrc/ | i b/ aspectjrt. | ar filethat comeswith the Connector/Jdis-
tribution.

1.2.3.2. IDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

» Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character en-
coding was not supported by the server, however the JDBC driver could use it, allowing storage of
multiple character setsin latinl tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this
functionality, and can not upgrade them to use the official Unicode character support in MySQL
server version 4.1 or newer, you should add the following property to your connection URL.:

useO dUTF8Behavi or =t r ue

e Server-side Prepared Satements - Connector/J 3.1 will automatically detect and use server-side pre-
pared statements when they are available (MySQL server version 4.1.0 and newer). If your applica
tion encountersissues with server-side prepared statements, you can revert to the older client-side
emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServer PrepSt nt s=f al se

1.2.4. Installing from the Development Source Tree
Caution
Y ou should read this section only if you are interested in helping us test our new code. If
you just want to get MySQL Connector/J up and running on your system, you should use a
standard release distribution.
Toinstall MySQL Connector/Jfrom the development source tree, make sure that you have the following
prerequisites:
e Subversion, to check out the sources from our repository (available from
http://subversion.tigris.org/).

» Apache Ant version 1.6 or newer (available from http://ant.apache.org/).

e JDK-1.4.2 or later. Although MySQL Connector/J can be installed on older JDKs, to compile it from
source you must have at least JIDK-1.4.2.

http://subversion.tigris.org/
http://ant.apache.org/

MySQL Connector/J

The Subversion source code repository for MySQL Connector/Jis located at ht-
tp://svn.mysqgl.com/svnpublic/connector-j. In general, you should not check out the entire repository be-
cause it contains every branch and tag for MySQL Connector/J and is quite large.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Atthetime of thiswriting, there are three active branches of Connector/J: br anch_3 0,
branch_3 1 andbranch_5_ 0. Check out the latest code from the branch that you want with
the following command (replacing [maj or] and [mi nor] with appropriate version numbers):

shel | > svn co »
http://svn.nysqgl.conl svnpublic/connector-j/branches/branch_[major]_[m nor]/connector-j

Thiscreatesaconnect or -] subdirectory in the current directory that contains the latest sources
for the requested branch.

2. Changelocationtotheconnect or - | directory to makeit your current working directory:

shel | > cd connector -]

3. Issuethe following command to compile the driver and createa. | ar file suitable for installation:

shel | > ant di st

Thiscreatesabui | d directory in the current directory, where all build output will go. A directory
iscreated inthe bui | d directory that includes the version number of the sources you are building
from. This directory contains the sources, compiled . cl ass files,anda. | ar file suitable for de-
ployment. For other possible targets, including ones that will create afully packaged distribution,
issue the following command:

shel | > ant --projecthelp

4. A newly created . j ar file containing the JDBC driver will be placed in the directory bui | d/
mysql - connect or - j ava- [ver si on] .

Install the newly created JDBC driver asyou would abinary . | ar file that you download from

MySQL by following the instructionsin Section 1.2.2, “Installing the Driver and Configuring the
CLASSPATH".

1.3. Connector/J Examples

Examples of using Connector/J are located throughout this document, this section provides a summary
and links to these examples.

» Example 1, “Obtaining a connection from the Dr i ver Manager”

e Example 2, “Using java.sgl.Statement to execute a SELECT query”

* Example 3, “ Stored Procedures’

e Example4, “Using Connection. prepareCal |l ()”

» Example5, “Registering output parameters”

http://svn.mysql.com/svnpublic/connector-j
http://svn.mysql.com/svnpublic/connector-j

MySQL Connector/J

* Example6, “Setting Cal | abl eSt at enent input parameters’
» Example 7, “Retrieving results and output parameter values’

* Example 8, “Retrieving AUTO_| NCREMENT column values using St at e-
ment . get Gener at edKeys()”

e Example9, “Retrieving AUTO | NCREMENT column values using SELECT
LAST | NSERT I D()”

» Example 10, “Retrieving AUTO | NCREMVENT column valuesin Updat abl e Resul t Set s”
» Example 11, “Using a connection pool with a J2EE application server”

» Example 12, “Example of transaction with retry logic”

1.4. Connector/J (JDBC) Reference

This section of the manual contains reference material for MySQL Connector/J, some of which is auto-
matically generated during the Connector/J build process.

1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration
Properties for Connector/J

The name of the class that implements java.sgl.Driver in MySQL Connector/Jis

com nysql .jdbc. Driver.Theorg. gjt. mm nysql . Dri ver classnameisalso usableto re-
main backward-compatible with MM.MySQL. Y ou should use this class name when registering the
driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/Jis as follows, with items in square brackets ([,]) being
optional:

jdbc:nysqgl://[host][,failoverhost...][:port]/[database] »
[?propertyNanel] [=pr opertyVal uel] [&r opert yNane2] [=pr opertyVal ue2] . ..

If the hosthame is not specified, it defaultsto 127.0.0.1. If the port is not specified, it defaults to 3306,
the default port number for MySQL servers.

jdbc:nysqgl://[host:port],[host:port].../[database] »
[?propertyNanel] [=pr opertyVal uel] [&r opert yNane2] [=pr opertyVal ue2] . ..

If the database is not specified, the connection will be made with no default database. In this case, you
will need to either call theset Cat al og() method on the Connection instance or fully-specify table
names using the database name (i.e. SELECT dbnane. t abl enane. col nane FROM db-

nane. t abl enane. . .)inyour SQL. Not specifying the database to use upon connection is generally
only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any humber of slave
hosts and till perform read-only queries. Fail-over only happens when the connection isin an aut o-
Conmit (true) state, because fail-over can not happen reliably when atransactionisin progress.
Most application servers and connection pools set aut oConmi t tot r ue at the end of every transac-
tion/connection use.

Thefail-over functionality has the following behavior:

MySQL Connector/J

If the URL property autoReconnect is false: Failover only happens at connection initialization, and
failback occurs when the driver determines that the first host has become available again.

If the URL property autoReconnect is true: Failover happens when the driver determines that the
connection has failed (before every query), and falls back to the first host when it determines that the
host has become available again (after quer i esBef or eRet r yMast er queries have beenis-
sued).

In either case, whenever you are connected to a "failed-over" server, the connection will be set to read-
only state, so queries that would modify datawill have exceptions thrown (the query will never be pro-
cessed by the MySQL server).

Configuration properties define how Connector/J will make a connection to aMySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

Using the set* () methods on MySQL implementations of java.sgl.DataSource (which is the preferred
method when using implementations of java.sql.DataSource):

e com.mysgl.jdbc.jdbc2.optiona .Mysgl DataSource
« com.mysgl.jdbc.jdbc2.optional.Mysgl ConnectionPool DataSource

Asakey/value pair in the java.util.Properties instance passed to Dr i ver Man-
ager . get Connection() orDriver. connect ()

AsaJDBC URL parameter in the URL givento
j ava. sql . Dri ver Manager . get Connection(),j ava. sql . Driver. connect () or
the MySQL implementations of thej avax. sql . Dat aSour ce set URL() method.

Note
If the mechanism you use to configure aJDBC URL is XML-based, you will need to use the

XML character literal & amp; to separate configuration parameters, as the ampersand isare-
served character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default |Since
Value |Version
user The user to connect as al
password The password to use when connecting al
socketFactory The name of the classthat the driver should use for |com.mys|3.0.3
creating socket connections to the server. This gl.jdbc.S
class must implement the interface tandard-
‘com.mysql.jdbc.SocketFactory' and have public | Socket-
no-args constructor. Factory
connectTimeout Timeout for socket connect (in milliseconds), with |0 3.01

0 being no timeout. Only works on JDK-1.4 or
newer. Defaultsto '0'.

socketTimeout Timeout on network socket operations (0, thede- |0 301

8

MySQL Connector/J

fault means no timeout).

useConfigs

Load the comma-delimited list of configuration
properties before parsing the URL or applying
user-specified properties. These configurations are
explained in the 'Configurations' of the documenta-
tion.

315

interactiveClient

Set the CLIENT_INTERACTIVE flag, which tells
MySQL to timeout connections based on INTER-
ACTIVE_TIMEOUT instead of
WAIT_TIMEOUT

false

3.10

local SocketAddress

Hostname or | P address given to explicitly config-
ure the interface that the driver will bind the client
side of the TCP/IP connection to when connecting.

505

propertiesTransform

An implementation of
com.mysgl.jdbc.ConnectionPropertiesTransform
that the driver will use to modify URL properties
passed to the driver before attempting a connection

314

useCompression

Use zlib compression when communicating with
the server (true/false)? Defaultsto 'false'.

false

3.0.17

High Availability and Clustering.

Property Name

Definition

Default
Value

Since
Version

autoReconnect

Should the driver try to re-establish stale and/or
dead connections? If enabled the driver will throw
an exception for aqueriesissued on a stale or dead
connection, which belong to the current transac-
tion, but will attempt reconnect before the next
guery issued on the connection in anew transac-
tion. The use of this feature is not recommended,
because it has side effects related to session state
and data consistency when applications
don'thandle SQL Exceptions properly, and is only
designed to be used when you are unable to con-
figure your application to handle SQL Exceptions
resulting from dead andstal e connections properly.
Alternatively, investigate setting the MySQL serv-
er variable "wait_timeout"to some high value
rather than the default of 8 hours.

false

11

autoReconnectForPool s

Use areconnection strategy appropriate for con-
nection pools (defaults to 'false)

false

3.13

failOverReadOnly

When failing over in autoReconnect mode, should
the connection be set to 'read-only'?

true

3.0.12

reconnectAtTxEnd

If autoReconnect is set to true, should the driver at-
tempt reconnectionsat the end of every transac-
tion?

fase

3.0.10

roundRobinL oadBalance

When autoReconnect is enabled, and failover-
Readonly is false, should we pick hosts to connect
to on around-robin basis?

false

312

queriesBeforeRetryMaster

Number of queriesto issue before falling back to
master when failed over (when using multi-host

50

302

9

MySQL Connector/J

failover). Whichever condition is met first, 'quer-
iesBeforeRetryMaster' or 'secondsBeforeRetryMas-
ter' will cause an attempt to be made to reconnect
to the master. Defaults to 50.

secondsBeforeRetryMaster

How long should the driver wait, when failed over,
before attempting to reconnect to the master serv-
er? Whichever condition is met first, 'queriesBe-
foreRetryMaster' or 'secondsBeforeRetryM aster
will cause an attempt to be made to reconnect to
the master. Time in seconds, defaults to 30

30

302

resourceld

A globally unique name that identifies the resource
that this datasource or connection is connected to,
used for XAResource.isSameRM () when the driver
can't determine this value based on hostnames used
inthe URL

501

Security.

Property Name

Definition

Default
Value

Since
Version

allowMultiQueries

Allow the use of ;' to delimit multiple queries dur-
ing one statement (true/false, defaults to 'false’

false

311

useSSL

Use SSL when communicating with the server
(trueffalse), defaults to 'false'

fase

302

requireSSL

Reguire SSL connection if useSSL=true? (defaults
to 'false).

false

310

alowUrlInLocallnfile

Should the driver allow URLsin 'LOAD DATA
LOCAL INFILE' statements?

fase

314

paranoid

Take measures to prevent exposure sensitive in-
formation in error messages and clear data struc-
tures holding sensitive data when possible?
(defaultsto 'false)

false

301

Perfor mance Extensions.

Property Name

Definition

Default
Value

Since
Version

metadataCacheSize

The number of queries to cacheResultSetM etadata
for if cacheResultSetMetaData is set to 'true
(default 50)

50

311

prepStmtCacheSize

If prepared statement caching is enabled, how
many prepared statements should be cached?

25

3.0.10

prepStmtCacheSqlLimit

If prepared statement caching is enabled, what's
the largest SQL the driver will cache the parsing
for?

256

3.0.10

useCursorFetch

If connected to MySQL > 5.0.2, and setFetchSize()
> 0 on a statement, should that statement use curs-
or-based fetching to retrieve rows?

false

5.00

blobSendChunkSize

Chunk to use when sending BLOB/CLOBsVvia
ServerPreparedStatements

1048576

3.19

10

MySQL Connector/J

cacheCallableStmts

Should the driver cache the parsing stage of
CallableStatements

false

312

cachePrepStmts

Should the driver cache the parsing stage of Pre-
paredStatements of client-side prepared state-
ments, the "check” for suitability of server-side
prepared and server-side prepared statements
themselves?

false

3.0.10

cacheResultSetM etadata

Should the driver cache ResultSetMetaData for
Statements and PreparedStatements? (Req. JDK-
1.4+, trueffalse, default 'false’)

fase

311

cacheServerConfiguration

Should the driver cache the results of 'SHOW
VARIABLES and 'SHOW COLLATION' on a
per-URL basis?

false

3.15

defaultFetchSize

The driver will call setFetchSize(n) with thisvalue
on all newly-created Statements

3.19

dontTrackOpenResources

The JDBC specification requires the driver to auto-
matically track and close resources, however if
your application doesn't do a good job of explicitly
caling close() on statements or result sets, this can
cause memory leakage. Setting this property to
true relaxes this constraint, and can be more
memory efficient for some applications.

false

317

dynamicCalendars

Should the driver retrieve the default calendar
when required, or cache it per connection/session?

false

315

elideSetAutoCommits

If using MySQL-4.1 or newer, should the driver
only issue 'set autocommit=n' queries when the
server's state doesn't match the requested state by
Connection.setAutoCommit(bool ean)?

false

313

holdResultsOpenOver State-
mentClose

Should the driver close result sets on State-
ment.close() as required by the JDBC specifica
tion?

false

317

locatorFetchBufferSize

If 'emulatel ocators is configured to 'true’, what
size buffer should be used when fetching BLOB
data for getBinarylnputStream?

1048576

321

rewriteBatchedStatements

Should the driver use multiqueries (irregardless of
the setting of "allowMultiQueries') aswell asre-
writing of prepared statements for INSERT into
multi-val ue inserts when executeBatch() is called?
Notice that this has the potential for SQL injection
if using plain java.sgl.Statements and your code
doesn't sanitize input correctly. Notice that for pre-
pared statements, server-side prepared statements
can not currently take advantage of this rewrite op-
tion, and that if you don't specify stream lengths
when using PreparedStatement.set* Stream(),the
driver won't be able to determine the optimium
number of parameters per batch and you might re-
ceive an error from the driver that the resultant
packet istoo large. Statement.getGeneratedK eys()
for these rewritten statements only works when the
entire batch includes INSERT statements.

false

3.1.13

useFastDateParsing

Useinterna String->Date/Time/Teimstamp con-
version routines to avoid excessive object cre-

true

505

11

MySQL Connector/J

ation?

useFastintParsing Useinternal String->Integer conversion routinesto |true 314
avoid excessive object creation?

uselvmCharsetConverters Always use the character encoding routines built |false 5.0.1
into the VM, rather than using lookup tables for
single-byte character sets?

usel ocal SessionState Should the driver refer to the internal values of false 317
autocommit and transaction isolation that are set
by Connection.setAutoCommit() and Connec-
tion.setTransactionl solation(), rather than querying
the database?

useReadA headlnput Use newer, optimized non-blocking, buffered input |true 315
stream when reading from the server?

Debuging/Profiling.

Property Name Definition Default |Since

Value [Version

logger The name of a class that implements com.mys|(3.1.1
‘com.mysgl.jdbc.log.Log' that will beusedtolog |gl.jdbc.l
messages to.(default is og.Stand
‘com.mysqgl.jdbc.log.StandardL ogger', which logs |ardLog-
to STDERR) ger

profileSQL Trace queries and their execution/fetch timesto the|false 3.1.0
configured logger (true/false) defaultsto 'false'

reportMetricsintervalMillis |If 'gatherPerfMetrics' is enabled, how often should |30000 |3.1.2
they be logged (in ms)?

maxQuerySizeTolLog Controls the maximum length/size of aquery that {2048 313
will get logged when profiling or tracing

packetDebugBufferSize The maximum number of packetsto retainwhen |20 313
‘enablePacketDebug' istrue

slowQueryThresholdMillis |1 'logSlowQueries' is enabled, how long should a {2000 312
query (in ms) beforeitislogged as 'slow'?

useUsageAdvisor Should the driver issue 'usage' warnings advising |false 311
proper and efficient usage of JDBC and MySQL
Connector/Jto the log (trueffalse, defaultsto
‘false’)?

autoGenerateTestcaseScript | Should the driver dump the SQL it is executing, in-|false 319
cluding server-side prepared statements to
STDERR?

dumpM etadataOnColum- Should the driver dump the field-level metadata of |false 3.1.13

nNotFound aresult set into the exception message when Res-
ultSet.findColumn() fails?

dumpQueriesOnException Should the driver dump the contents of the query |false 313
sent to the server in the message for SQL Excep-
tions?

enablePacketDebug When enabled, aring-buffer of ‘packetDebugBuf- |false 313

ferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's
code

12

MySQL Connector/J

explainSlowQueries

If 'logSlowQueries' is enabled, should the driver
automatically issue an 'EXPLAIN' on the server
and send the results to the configured log at a
WARN level?

false

312

logSlowQueries

Should queries that take longer than 'slowQueryTh-
resholdMillis be logged?

false

312

logXaCommands

Should the driver log XA commands sent by
Mysqgl XaConnection to the server, at the DEBUG
level of logging?

false

505

traceProtocol

Should trace-level network protocol be logged?

false

312

Miscellaneous.

Property Name

Definition

Default
Value

Since
Version

useUnicode

Should the driver use Unicode character encodings
when handling strings? Should only be used when
the driver can't determine the character set map-
ping, or you are trying to 'force' the driver to use a
character set that MySQL either doesn't natively
support (such as UTF-8), true/false, defaults to
‘true’

true

11g

characterEncoding

If 'useUnicode' is set to true, what character encod-
ing should the driver use when dealing with
strings? (defaults is to 'autodetect’)

1.19g

characterSetResults

Character set to tell the server to return results as.

3.0.13

connectionCollation

If set, tells the server to use this collation via'set
collation_connection’

3.0.13

sessionVariables

A comma-separated list of name/value pairsto be
sent as SET SESSION ... to the server when the
driver connects.

318

alowNanAndl nf

Should the driver allow NaN or +/- INF valuesin
PreparedStatement.setDouble()?

false

3.15

autoClosePStmtStreams

Should the driver automatically call .close() on
streams/readers passed as arguments via set* ()
methods?

false

3.1.12

autoDeseridlize

Should the driver automatically detect and de-
serialize objects stored in BLOB fields?

false

315

capitalizeTypeNames

Capitalize type names in DatabaseM etaData?
(usually only useful when using WebObjects, true/
false, defaults to 'false’)

fase

207

clobCharacterEncoding

The character encoding to use for sending and re-
trieving TEXT, MEDIUMTEXT and LONGTEXT
valuesinstead of the configured connection char-
acterEncoding

5.0.0

clobberStreamingResults

Thiswill cause a'streaming' ResultSet to be auto-
matically closed, and any outstanding data still
streaming from the server to be discarded if anoth-
er query is executed before all the data has been
read from the server.

false

3.09

13

MySQL Connector/J

continueBatchOnError

Should the driver continue processing batch com-
mands if one statement fails. The JDBC spec al-
lows either way (defaultsto 'true’).

true

3.03

createDatabasel fNotExist

Creates the database given in the URL if it doesn't
yet exist. Assumes the configured user has permis-
sions to create databases.

fase

319

emptyStringsConvertToZero

Should the driver allow conversions from empty
string fields to numeric values of '0'?

true

3.18

emulatelocators

N/A

false

3.1.0

emulateUnsupportedPstmts

Should the driver detect prepared statements that
are not supported by the server, and replace them
with client-side emul ated versions?

true

317

generateSimpleParameter-
Metadata

Should the driver generate simplified parameter
metadata for PreparedStatements when no
metadata is available either because the server
couldn't support preparing the statement, or server-
side prepared statements are disabled?

false

505

ignoreNonTxTables

Ignore non-transactional table warning for roll-
back? (defaults to 'false').

false

3.09

jdbcCompliantTruncation

Should the driver throw java.sgl.DataTruncation

exceptions when datais truncated as is required by
the JIDBC specification when connected to a server
that supports warnings(MySQL 4.1.0 and newer)?

true

312

maxRows

The maximum number of rows to return (0, the de-
fault meansreturn all rows).

]
[R5

al ver-
sions

noAccessToProcedureBodies

When determining procedure parameter types for
CallableStatements, and the connected user can't
access procedure bodies through "SHOW CRE-
ATE PROCEDURE" or select on mysgl.proc
should the driver instead create basic metadata (all
parameters reported as INOUT VARCHARS) in-
stead of throwing an exception?

fase

503

noDatetimeStringSync

Don't ensure that Result-
Set.getDatetimeType().toString().equal s(Resul tSet.
getString())

false

3.17

noTimezoneConversionFor-
TimeType

Don't convert TIME values using the server
timezone if 'useTimezone'="true'

false

5.0.0

null Catal ogM eansCurrent

When DatabaseM etadataM ethods ask for a'cata-
log' parameter, does the value null mean use the
current catalog? (thisis not JDBC-compliant, but
follows legacy behavior from earlier versions of
the driver)

true

3.18

null NamePatternM atchesAl |

Should DatabaseM etaData methods that accept

* pattern parameters treat null the same as'%' (this
is not JIDBC-compliant, however older versions of
the driver accepted this departure from the spe-
cification)

true

318

overrideSupportslntegrityEn-
hancementFacility

Should the driver return "true" for Database-

M etaData.supportsl ntegrityEnhancementFacility()
even if the database doesn't support it to work-
around applications that require this method to re-
turn "true" to signal support of foreign keys, even

fase

3.1.12

14

MySQL Connector/J

though the SQL specification states that this facil-
ity contains much more than just foreign key sup-
port (one such application being OpenOffice)?

pedantic

Follow the JDBC spec to the letter.

fase

3.00

pinGlobal TxToPhysical Con-
nection

When using XAConnections, should the driver en-
sure that operations on a given XID are always
routed to the same physical connection? This al-
lows the X AConnection to support "XA START ...
JOIN" after "XA END" has been called

false

501

processEscapeCodesForPrep-
Stmts

Should the driver process escape codes in queries
that are prepared?

true

3.1.12

relaxAutoCommit

If the version of MySQL the driver connectsto
does not support transactions, still allow callsto
commit(), rollback() and setAutoCommit()
(trueffalse, defaultsto 'false’)?

false

2.0.13

retainStatementAfterResult-
SetClose

Should the driver retain the Statement reference in
a ResultSet after ResultSet.close() has been called.
Thisis not JIDBC-compliant after JDBC-4.0.

false

3111

rollbackOnPooledClose

Should the driver issue arollback() when the logic-
al connection in apool is closed?

true

3.0.15

runningCTS13

Enables workarounds for bugs in Sun's JDBC
compliance testsuite version 1.3

false

317

serverTimezone

Override detection/mapping of timezone. Used
when timezone from server doesn't map to Java
timezone

302

strictFloatingPoint

Used only in older versions of compliance test

fase

3.00

strictUpdates

Should the driver do strict checking (all primary
keys selected) of updatable result sets (true, false,
defaultsto 'true’)?

true

3.04

tinylntlisBit

Should the driver treat the datatype TINYINT(1)
asthe BIT type (because the server silently con-
verts BIT -> TINYINT(1) when creating tables)?

true

3.0.16

transformedBitl sBoolean

If the driver converts TINYINT(1) to a different
type, should it use BOOLEAN instead of BIT for
future compatibility with MySQL-5.0, as MySQL -
5.0 hasaBIT type?

fase

319

treatUtil DateAsTimestamp

Should the driver treat java.util.Date asa
TIMESTAMP for the purposes of PreparedState-
ment.setObject()?

true

505

ultraDevHack

Create PreparedStatements for prepareCall() when
required, because UltraDev is broken and issues a
prepareCall() for _all_ statements? (true/false, de-
faultsto 'false))

false

203

useGmtMillisForDatetimes

Convert between session timezone and GMT be-
fore creating Date and Timestamp instances (value
of "false" islegacy behavior, "true" leads to more
JDBC-compliant behavior.

false

3112

useHostsInPrivileges

Add '@hostname’ to usersin Database-
MetaData.getColumn/TablePrivileges()
(trueffalse), defaults to 'true'.

true

3.0.2

usel nformationSchema

When connected to MySQL-5.0.7 or newer, should

false

5.00

15

MySQL Connector/J

the driver use the INFORMATION_SCHEMA to
derive information used by DatabaseM etaData?

useJDBCCompliant- Should the driver use JDBC-compliant ruleswhen |false 5.0.0
TimezoneShift converting TIME/TIMESTAMP/DATETIME val-
ues timezone information for those JDBC argu-
ments which take ajava.util.Calendar argument?
(Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

useOldAliasM etadataBehavi- |Should the driver use the legacy behavior for "AS" |true 5.04
or clauses on columns and tables, and only return ali-
ases (if any) for ResultSet-
MetaData.getColumnName() or ResultSet-
MetaData.get TableName() rather than the original
column/table name?

useOldUTF8Behavior Use the UTF-8 behavior the driver did when com- |false 3.1.6
municating with 4.0 and older servers

useOnlyServerErrorMessages |Don't prepend 'standard’ SQL State error messages |true 3.0.15
to error messages returned by the server.

useSSPSCompatible- If migrating from an environment that wasusing |false 5.05
TimezoneShift server-side prepared statements, and the configura-
tion property "useJDBCCompliantTimeZoneShift"
set to "true”, use compatible behavior when not us-
ing server-side prepared statements when sending
TIMESTAMP valuesto the MySQL server.

useServerPrepStmts Use server-side prepared statementsif the server |false 3.1.0
supports them?

useSql StateCodes Use SQL Standard state codes instead of 'legacy’ |true 313
X/Open/SQL state codes (true/false), default is
‘true’

useStreamLengthsinPrepSt- |Honor stream length parameter in PreparedState- | true 3.0.2

mts ment/ResultSet.setX X X Stream() method calls
(trueffalse, defaultsto 'true’)?

useTimezone Convert time/date types between client and server |false 3.0.2
timezones (true/false, defaults to 'false)?

useUnbufferedinput Don't use BufferedinputStream for reading data |true 3011
from the server

yearlsDateType Should the JDBC driver treat the MySQL type true 319
"YEAR" asajava.sgl.Date, or asa SHORT?

zeroDateTimeBehavior What should happen when the driver encounters |excep- |3.1.4

DATETIME values that are composed entirely of [tion
zeroes (used by MySQL to represent invalid
dates)? Valid values are 'exception’, 'round' and
‘convertToNull'.

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the
NamedPipeSocketFactory as a plugin-socket factory via the socketFactory property. If you don't use a
namedPipePath property, the default of "\.\pipe\MySQL" will be used. If you use the Naned-

Pi peSocket Fact or y, the hostname and port number valuesin the JDBC url will be ignored. You
can enable this feature using:

socket Fact ory=com nysql . j dbc. NanmedPi peSocket Fact ory

16

MySQL Connector/J

Named pipes only work when connecting to a MySQL server on the same physical machine as the one
the JDBC driver is being used on. In simple performance tests, it appears that named pipe accessis
between 30%-50% faster than the standard TCP/IP access.

Y ou can create your own socket factories by following the example codein
com nysql . j dbc. NanedPi peSocket Fact ory, or
com nysql . j dbc. St andar dSocket Fact ory.

1.4.2. JDBC API Implementation Notes

MySQL Connector/J passes al of thetestsin the publicly-available version of Sun's JDBC compliance
test suite. However, in many places the JDBC specification is vague about how certain functionality
should be implemented, or the specification allows leaway in implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions
may affect how you use MySQL Connector/J.

 Blob

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property
‘emulatel ocators=true' to your JDBC URL. Using this method, the driver will delay loading the ac-
tual Blob data until you retrieve the other data and then use retrieval methods (get | nput -
Strean(),get Byt es(), and so forth) on the blob data stream.

For this to work, you must use a column alias with the value of the column to the actual name of the
Blob, for example:

SELECT id, data as 'data’ from bl obtable

For this to work, you must also follow follow these rules:
e The SELECT must aso reference only one table, the table must have a primary key.
e The SELECT must cover al columns that make up the primary key.

The Blob implementation does not allow in-place modification (they are copies, as reported by the
Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, you should use
the corresponding Pr epar edSt at enent . set Bl ob() or Resul t Set . updat eBl ob() (in
the case of updatable result sets) methods to save changes back to the database.

e CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL ver-
sion 5.0 or newer viathe Cal | abl eSt at enent interface. Currently, the get Par anet er -
Vet aDat a() method of Cal | abl eSt at enent isnot supported.

e Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the
Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, you should use
the Pr epar edSt at ement . set Cl ob() method to save changes back to the database. The JD-
BC API doesnot haveaResul t Set . updat eCl ob() method.

e Connection

Unlike older versions of MM.MySQL thei sCl osed() method does not ping the server to determ-
ineif it isalive. In accordance with the JDBC specification, it only returnstrueif cl osed() has

17

MySQL Connector/J

been called on the connection. If you need to determine if the connection is still valid, you should is-
sue asimple query, such as SELECT 1. Thedriver will throw an exception if the connection is no
longer valid.

DatabaseM etaData

Foreign Key information (get | npor t edKeys() /get Export edKeys() and get Cr oss-
Ref er ence()) isonly available from InnoDB tables. However, the driver uses SHON CREATE
TABLE to retrieve this information, so when other storage engines support foreign keys, the driver
will transparently support them as well.

Prepar edStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement
feature. Because of this, the driver does not implement get Par anet er Met aDat a() or get -
Met aDat a() asit would reguire the driver to have a complete SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-en-
coded result sets are used when the server supports them.

Take care when using a server-side prepared statement with lar ge parametersthat are set viaset -
Bi naryStreanm(),set Ascii Strean(), set Uni codeStrean(),setBl ob(),or

set Cl ob() . If you want to re-execute the statement with any large parameter changed to a non-
large parameter, it is necessary to call cl ear Par anet er s() and set al parameters again. The
reason for thisis asfollows:

» During both server-side prepared statements and client-side emulation, large data is exchanged
only when Pr epar edSt at enent . execut e() iscalled.

* Oncethat has been done, the stream used to read the data on the client sideis closed (as per the
JDBC spec), and can't be read from again.

< |f aparameter changes from large to non-large, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior
large value. Thisremoves al of the large data that has already been sent to the server, thus re-
quiring the data to be re-sent, viathe set Bi narySt r ean(), set Asci i Strean(), set U-
ni codeStrean(),set Bl ob() orset C ob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call
cl ear Par anmet er s() and set al parameters of the prepared statement again before it can be re-
executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases thisis the most
efficient way to operate, and due to the design of the MySQL network protocol is easier to imple-
ment. If you are working with ResultSets that have a large number of rows or large values, and can
not allocate heap space in your VM for the memory required, you can tell the driver to stream the
results back one row at atime.

To enable this functionality, you need to create a Statement instance in the following manner:

stnt = conn. createStat enent (j ava. sgl . Resul t Set . TYPE_FORWARD_ONLY,
java. sql . Resul t Set . CONCUR_READ_ONLY) ;
stnt. set Fet chSi ze(| nteger. M N_VALUE) ;

The combination of aforward-only, read-only result set, with afetch size of | n-
teger. M N_VALUE serves asasignal to the driver to stream result sets row-by-row. After this any
result sets created with the statement will be retrieved row-by-row.

18

MySQL Connector/J

There are some caveats with this approach. Y ou will have to read all of the rows in the result set (or
closeit) before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be Myl SAMtable-level
locks or row-level locks in some other storage engine such as | nnoDB) is when the statement com-
pletes.

If the statement is within scope of atransaction, then locks are released when the transaction com-
pletes (which implies that the statement needs to complete first). Aswith most other databases, state-
ments are not complete until al the results pending on the statement are read or the active result set
for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to
maintain concurrent access to the tables referenced by the statement producing the result set.

* ResultSetMetaData
Thei sAut ol ncr enment () method only works when using MySQL servers 4.0 and newer.
» Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier
than 5.0.3, the set Fet chSi ze() method has no effect, other than to toggle result set streaming as
described above.

Connector/J5.0.0 and later include support for both St at enent . cancel () and St at e-

ment . set Quer yTi neout () . Both require MySQL 5.0.0 or newer server, and require a separate
connection to issuethe KI LL QUERY statement. In the case of set Quer yTi nmeout () , theimple-
mentation creates an additional thread to handle the timeout functionality.

Note

Failuresto cancel the statement for set Quer yTi neout () may manifest themselves as
Runt i neExcept i on rather than failing silently, asthereis currently no way to unblock
the thread that is executing the query being cancelled due to timeout expiration and have it
throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursor-
Name()" has no effect.

1.4.3. Java, JDBC and MySQL Types

MySQL Connector/Jisflexiblein the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to ajava.lang.String, and any numerical type can be
converted to any of the Java numerical types, although round-off, overflow, or loss of precision may oc-
cur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataTruncation excep-
tions asisrequired by the JDBC specification unless the connection was configured not to do so by us-
ing the property jdbcCompliantTruncation and setting itto f al se.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties- Miscellaneous.

19

MySQL Connector/J

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM java.lang. String,

and SET java.io. |l nput Stream
java.io. Reader, java.sql. Bl ob,
java.sqgl . d ob

FLOAT, REAL, DOUBLE PRECI SI ON, NU- |java.lang. String, java.lang. Short,

MERI C, DECI MAL, TI NYI NT, SMALLI NT,
MEDI UM NT, | NTEGER, BI G NT

java.l ang. I nteger, java.lang.Long,

j ava. | ang. Doubl e,
j ava. mat h. Bi gDeci nal

DATE, TIME, DATETI ME, TI MESTAWMP

java.lang. String, java.sql.Date,

j ava. sql . Ti mest anp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric data type
that has less precision or capacity than the MySQL data type you are converting to/from.

TheResul t Set . get Obj ect () method uses the type conversions between MySQL and Javatypes,
following the JDBC specification where appropriate. The value returned by Resul t Set -

Met aDat a. Get Col unmCl assNane() isalso shown below. For more information on the

j ava. sql . Types classes see Java 2 Platform Types
[http://java.sun.com/j2se/1.4.2/docs/api/javalsgl/ Types.html].

MySQL Typesto Java Typesfor ResultSet.getObject().

MySQL Type Name

Return value of Get -
Col umdl assNane

Returned as Java Class

BIT(2) (new in MySQL-
5.0)

BIT

j ava. | ang. Bool ean

BIT(>1) (newin BIT byte[]

MySQL-5.0)

TINYINT TINYINT j ava. | ang. Bool ean if the configuration prop-
ertytinylntlisBit issettotrue (thede
fault) and the storage sizeis 1, or
java. |l ang. | nt eger if not.

BOOL, BOOLEAN TINYINT See TINYINT, above asthese are aliases for
TINYINT(2), currently.

SMALLINT[(M)] SMALLINT java. |l ang. | nt eger (regardlessif UN-

[UNSIGNED] [UNSIGNED] SIGNED or not)

MEDIUMINT[(M)] MEDIUMINT java.l ang. I nteger, if UNSIGNED

[UNSIGNED] [UNSIGNED] java.l ang. Long

INT,INTEGER[(M)] INTEGER java. |l ang. I nt eger, if UNSIGNED

[UNSIGNED] [UNSIGNED] j ava. |l ang. Long

BIGINT[(M)] BIGINT [UNSIGNED] |j ava. | ang. Long, if UNSIGNED

[UNSIGNED] j ava. mat h. Bi gl nt eger

FLOATI[(M,D)] FLOAT j ava. | ang. Fl oat

DOUBLE[(M,B)] DOUBLE j ava. |l ang. Doubl e

DECIMAL[(M[,D])] DECIMAL j ava. mat h. Bi gDeci mal

DATE DATE j ava. sql . Dat e

DATETIME DATETIME j ava. sql . Ti nest anp

20

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

MySQL Connector/J

TIMESTAMP[(M)] TIMESTAMP j ava. sql . Ti nest anp

TIME TIME java.sqgl . Tine

YEAR[(2[4)] YEAR If year | sDat eType configuration property is
set to false, then the returned object typeis
j ava. sql . Short . If setto true (the default)
then an object of typej ava. sql . Dat e (with the
date set to January 1st, at midnight).

CHAR(M) CHAR java. | ang. Stri ng (unlessthe character set
for the column is BINARY, thenbyt e[] isre
turned.

VARCHAR(M) VARCHAR java.l ang. Stri ng (unlessthe character set

[BINARY] for the column is BINARY, thenbyt e[] isre-
turned.

BINARY (M) BINARY byt e[]

VARBINARY (M) VARBINARY byt e[]

TINYBLOB TINYBLOB byt e[]

TINYTEXT VARCHAR java.lang. String

BLOB BLOB byt e[]

TEXT VARCHAR java.lang. String

MEDIUMBLOB MEDIUMBLOB byte[]

MEDIUMTEXT VARCHAR java.lang. String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.lang. String

ENUM(valuel','value2', |CHAR java.lang. String

)

SET('valuel','vaue?,...) |CHAR java.lang. String

1.4.4. Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native Java Uni-
code form to the client character encoding, including all queries sent via St at enent . execut e(),
St at ement . execut eUpdat e(), St at enent . execut eQuer y() aswell asal Pr epar ed-
St at ement and Cal | abl eSt at enrent parameters with the exclusion of parameters set using set -
Byt es(),setBi naryStreamn(),set Ascii Strean(),set Uni codeStrean() andset -

Bl ob() .

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which
could either be automatically detected from the server configuration, or could be configured by the user
through theuseUni code and char act er Encodi ng properties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and
server, and any number of character encodings for data returned by the server to the client in Resul t -
Set s.

The character encoding between client and server is automatically detected upon connection. The encod-
ing used by the driver is specified on the server viathechar act er _set system variable for server
versionsolder than 4.1.0 and char act er _set ser ver for server versions 4.1.0 and newer. For
more information, see Server Character Set and Collation
[http://dev.mysql.com/doc/refman/5.0/en/charset-server.html].

21

http://dev.mysql.com/doc/refman/5.0/en/charset-server.html

MySQL Connector/J

To override the automatically-detected encoding on the client side, usethe char act er Encodi ng

property in the URL used to connect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following
table lists Java-style names for MySQL character sets:

MySQL to Java Encoding Name Trandlations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

bigs Big5

gbk GBK

gis SJIS (or Cp932 or MS932 for MySQL Server <
4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gh2312 EUC_CN

ujis EUC JP

euckr EUC KR

latinl 1SO8859_1

latin2 1SO8859_2

greek 1SO8859_7

hebrew 1SO8859_8

cp866 Cp866

tis620 T1S620

cpl250 Cpl1250

cpl251 Cp1251

cpl257 Cpl257

macroman MacRoman

macce MacCentral Europe

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query 'set names with Connector/J, as the driver will not detect that the
character set has changed, and will continue to use the character set detected during the ini-

tial connection setup.

To alow multiple character setsto be sent from the client, the UTF-8 encoding should be used, either by
configuring ut f 8 as the default server character set, or by configuring the JDBC driver to use UTF-8

through the char act er Encodi ng property.

1.4.5. Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC
driver and the server. The performance penalty for enabling SSL is an increase in query processing time
between 35% and 50%, depending on the size of the query, and the amount of datait returns.

22

MySQL Connector/J

For SSL Support to work, you must have the following:

* A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not
currently work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the follow-
ing JSSE bug: http://devel oper.java.sun.com/devel oper/bugParade/bugs/4273544.html

e A MySQL server that supports SSL and has been compiled and configured to do so, which is
MySQL-4.0.4 or later, see Using Secure Connections
[http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html], for more information.

» A client certificate (covered later in this section)

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL
server CA Certificateislocated in the SSL subdirectory of the MySQL source distribution. Thisis what
SSL will use to determine if you are communicating with a secure MySQL server.

TouseJavaskeyt ool to create atruststore in the current directory , and import the server's CA certi-
ficate (cacert . pen), you can do the following (assuming that keyt ool isinyour path. The
keyt ool should be located in the bi n subdirectory of your JDK or JRE):

shel | > keytool -inport -alias nysql Server CACert \
-file cacert.pem -keystore truststore

Keytool will respond with the following information:

Ent er keystore password: ****xxxxx
Onner: EMAI LADDRESS=wal r us@xanpl e. com CN=Wal r us,
O=M/SQL AB, L=Orenburg, ST=Sone-State, C=RU
| ssuer: EMAI LADDRESS=wal r us@xanpl e. com CN=Wl rus,
O=MySQ. AB, L=Orenburg, ST=Sone-State, C=RU
Serial nunber: O
Valid from
Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:
MD5: 61:91: A0: F2: 03: 07: 61: 7A: 81: 38: 66: DA: 19: C4: 8D: AB
SHAL1: 25:77:41: 05: D5: AD: 99: 8C: 14: 8C: CA: 68: 9C: 2F: B8: 89: C3: 34: 4D: 6C
Trust this certificate? [no]: vyes
Certificate was added to keystore

Y ou will then need to generate a client certificate, so that the MySQL server knows that it istalking to a
secure client:

shel | > keyt ool -genkey -keyalg rsa \
-alias nmysglCientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keyst or e inthe
current directory.

Y ou should respond with information that is appropriate for your situation:

Enter keystore password: ****xxxxx

What is your first and | ast name?
[Unknown] : Matt hews

What is the nane of your organizational unit?
[Unknown] : Sof t war e Devel opnent

What is the nane of your organization?
[Unknown] : M/SQ. AB

What is the nane of your City or Locality?
[Unknown] : Fl ossnoor

VWhat is the nane of your State or Province?
[Unknown] : IL

What is the two-letter country code for this unit?
[Unknown] : US

23

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html

MySQL Connector/J

I's <CN=Matthews, OU=Software Devel opment, O=MySQ. AB,
L=Fl ossnoor, ST=IL, C=US> correct?

[no]: 'y

Enter key password for <mysqgl ClientCertificate>
(RETURN i f same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the fol-
lowing system properties when you start your VM, replacing path_to_keystore file with the full path to
the keystore file you created, path_to_truststore file with the path to the truststore file you crested, and
using the appropriate password values for each property. Y ou can do this either on the command line:

- Dj avax. net . ssl . keyStore=path_t o_keystore_file

- D avax. net . ssl . keySt or ePasswor d=passwor d

-Dj avax. net.ssl.trustStore=path_to_truststore_file
- D avax. net. ssl . trust St or ePasswor d=passwor d

Or you can set the values directly within the application:

System set Property("javax. net.ssl. keyStore", "path_to_keystore file");
System set Property("javax. net.ssl . keySt orePassword", "password") ;
System set Property("javax. net.ssl.trustStore","path_to truststore file");
System set Property("] avax. net. ssl . trust St orePassword", "password");

You will also need to set useSSL to t r ue in your connection parameters for MySQL Connector/J,
either by adding useSSL=t r ue to your URL, or by setting the property useSSL tot r ue inthe
java.util.Properties instanceyoupasstoDri ver Manager. get Connection().

Y ou can test that SSL isworking by turning on JSSE debugging (as detailed below), and look for the
following key events:

*** ClientHello, v3.1

RandonCooki e: GMI: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}

G pher Suites: { 0, 5 0, 4 0 9, 0, 10, O, 18, 0, 19, 0, 3, 0, 17 }

Conpressi on Methods: { 0 }

[wite] MD5 and SHAl hashes: |en = 59

0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A0C ...7..=....... J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...70.@.......
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........

0030: OA 00 12 00 13 00 03 00 11 01 OO ...,

main, WRITE: SSL v3.1 Handshake, |ength = 59

mai n, READ: SSL v3.1 Handshake, length = 74

*** ServerHello, v3.1

RandonCooki e: GMI: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »
202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

C pher Suite: { 0, 5}

Conpr essi on Method: O

90 Created: [Session-1, SSL_RSA W TH RC4_128_SHA]

** SSIL_ RSA W TH RC4_128_SHA

[read] MD5 and SHA1l hashes: len = 74

0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.Ct2.9.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA03 :.0 .d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7/F FCFE B2 .nR .\ ..T5Q ...
0030: B3 44 3F B6 9E 1E OB 96 4F AA 4C FF 5C OF E2 18 .D?..... O L.\
0040: 11 B1 DB 9E B1 BB 8F 00 O5 00

mai n, READ: SSL v3.1 Handshake, length = 1712

JSSE provides debugging (to STDOUT) when you set the following system property: -

24

MySQL Connector/J

Dj avax. net . debug=al | Thiswill tell you what keystores and truststores are being used, aswell as
what is going on during the SSL handshake and certificate exchange. It will be helpful when trying to
determine what is not working when trying to get an SSL connection to happen.

1.4.6. Using Master/Slave Replication with ReplicationConnection

Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send
gueries to aread/write master, or afailover or round-robin loadbalanced set of slaves based on the state
of Connecti on. get ReadOnl y() .

An application signals that it wants a transaction to be read-only by calling Connec-

tion.set ReadOnl y(true), thisreplication-aware connection will use one of the slave connec-
tions, which are load-balanced per-vm using a round-robin scheme (a given connection is sticky to a
dave unless that dave is removed from service). If you have awrite transaction, or if you have aread
that istime-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not
read-only, by calling Connect i on. set ReadOnl y(f al se) and thedriver will ensure that further
calls are sent to the master MySQL server. The driver takes care of propagating the current state of auto-
commit, isolation level, and catalog between al of the connections that it uses to accomplish thisload
balancing functionality.

To enable thisfunctionality, usethe” com nysql . j dbc. Repl i cationDriver " classwhen con-
figuring your application server's connection pool or when creating an instance of a JDBC driver for
your standalone application. Because it accepts the same URL format as the standard MySQL JDBC
driver, Repl i cati onDri ver doesnot currently work withj ava. sql . Dri ver Manager -based
connection creation unlessit isthe only MySQL JDBC driver registered withthe Dr i ver Manager .

Hereisashort, simple example of how ReplicationDriver might be used in a standal one application.

i mport java.sql.Connecti on;

i mport java.sql.ResultSet;

inmport java.util.Properties;

i mport com nysql . j dbc. ReplicationDri ver;
public class ReplicationDriverDenp {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

/1 We want this for failover on the slaves
props. put ("aut oReconnect", "true");

// W want to | oad bal ance between the sl aves
props. put ("roundRobi nLoadBal ance", "true");

props. put ("user", "foo");
props. put (" password", "bar");
/1

[/l Looks |ike a normal MySQL JDBC url, with a
/'l comma-separated |ist of hosts, the first
/] being the 'master', the rest being any nunber
” of slaves that the driver will |oad bal ance agai nst
Connection conn =
driver. co;mect ("jdbc: nysql :// master, sl avel, sl ave2, sl ave3/test",
props) ;

Performread/wite work on the naster
by setting the read-only flag to “fal se"

~———
~———

conn. set ReadOnl y(f al se);

conn. set Aut oCommi t (f al se) ;

conn. cr eat eSt at enent () . execut eUpdat e(" UPDATE sone_table");
conn.comit();

25

MySQL Connector/J

Now, do a query froma slave, the driver autonatically picks one
fromthe |ist

~———
~———

conn. set ReadOnl y(true);

ResultSet rs =
conn. creat eSt at enent () . execut eQuery(" SELECT a,b FROM alt_table");

1.5. Connector/J Notes and Tips
1.5.1. Basic JDBC Concepts

This section provides some general JDBC background.

1.5.1.1. Connecting to MySQL Using the Dri ver Manager Interface

When you are using JDBC outside of an application server, the Dr i ver Manager class managesthe
establishment of Connections.

TheDri ver Manager needsto be told which JIDBC driversit should try to make Connections with.
The easiest way to do thisisto use Cl ass. f or Nanme(') on the class that implements the

java. sql . Dri ver interface. With MySQL Connector/J, the name of this classis

com nysql . j dbc. Dri ver . With this method, you could use an external configuration file to supply
the driver class name and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the
mai n() method of your application:

i mport java.sql.Connecti on;
i mport java.sql.DriverManager;
i nport java. sql . SQLExcepti on;

// Notice, do not inport comnysql.jdbc.*
/1 or you will have probl ens!

public class LoadDriver {
public static void main(String[] args) {

try {
/'l The newi nstance() call is a work around for sone
/1 broken Java i npl enent ati ons

Cl ass. forNane("com nysql . jdbc. Driver").new nstance();
} catch (Exception ex) {

/1 handl e the error
}

After the driver has been registered with the Dr i ver Manager , you can obtain aConnect i on in-
stance that is connected to a particular database by calling Dr i ver Manager . get Connecti on():

Example 1. Obtaining a connection from the Dri ver Manager

This example shows how you can abtain aConnect i on instance fromthe Dr i ver Manager . There
are afew different signatures for the get Connect i on() method. Y ou should see the API document-
ation that comes with your JDK for more specific information on how to use them.

i mport java. sql . Connecti on;
inport java.sql.DriverManager;

26

MySQL Connector/J

i nport java.sql.SQ.Excepti on;

try {
Connection conn =
Dri ver Manager . get Connecti on("j dbc: nysql : //1 ocal host/test?" +
"user =nont y&passwor d=gr eat sql db") ;

/1 Do sonething with the Connection

} catch (SQLException ex) {
/! handl e any errors
System out. println("SQ.Exception: " + ex.getMessage());
Systemout.println("SQLState: " + ex.getSQL.State());
System out. println("VendorError: " + ex.getErrorCode());

OnceaConnect i on isestablished, it can be used to create St at enent and Pr epar edSt at e-
nment objects, aswell as retrieve metadata about the database. This is explained in the following sec-
tions.

1.5.1.2. Using Statements to Execute SQL

St at enent objects allow you to execute basic SQL queries and retrieve the results through the Res -
ul t Set classwhich is described later.

To createa St at ement instance, you call thecr eat eSt at ement () method onthe Connecti on
object you have retrieved viaone of the Dr i ver Manager . get Connecti on() or Dat a-
Sour ce. get Connect i on() methods described earlier.

Onceyou have a St at enent instance, you can execute a SELECT query by calling the ex-
ecut eQuery(String) method with the SQL you want to use.

To update data in the database, use the execut eUpdat e(St ri ng SQ.) method. This method re-
turns the number of rows affected by the update statement.

If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/lI NSERT,
then you can usetheexecut e(St ri ng SQL) method. This method will return true if the SQL query
was a SELECT, or falseif it was an UPDATE, | NSERT, or DELETE statement. |f the statement was a
SELECT query, you can retrieve the results by calling the get Resul t Set () method. If the statement
was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling
get Updat eCount () onthe St at ement instance.

Example 2. Using java.sql.Statement to execute a SELECT query

/'l assune that conn is an already created JDBC connection
Statement stnt = null;
ResultSet rs = null;

try {
stnt = conn. createStatenent();

rs = stnt.executeQuery(" SELECT foo FROM bar "),

/1 or alternatively, if you don't know ahead of tine that
// the query will be a SELECT...

if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();

}
/1 Now do sonething with the ResultSet
} finally {

/Il it Is a good idea to rel ease
/] resources in a finally{} block
I/l in reverse-order of their creation

27

MySQL Connector/J

// if they are no-longer needed
if (rs!=null) {
try

rs.close();
} catch (SQ.Exception sqlEx) { // ignore }

rs = null;

}
if (stnmt !'=null) {
try {
stnt.cl ose();
} catch (SQ.Exception sqlEx) { // ignore }

stm = null;

1.5.1.3. Using Cal | abl eSt at enent s to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the
java.sqgl . Cal | abl eSt at enent interfaceis fully implemented with the exception of the get -
Par anet er Met aDat a() method.

See Stored Procedures and Functions [http://dev.mysgl.com/doc/ref man/5.0/en/stored-procedures.htmi],
for more information on MySQL stored procedures.

Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.
Note

Current versions of MySQL server do not return enough information for the JDBC driver to
provide result set metadata for callable statements. This means that when using
Cal | abl eSt at enent , Resul t Set Met aDat a may return NULL.

The following example shows a stored procedure that returns the value of i nCut Par amincremented
by 1, and the string passed in viai nput Par amasaResul t Set :

Example 3. Stored Procedures

CREATE PROCEDURE denpSp(| N i nput Par am VARCHAR(255), \
I NOUT i nQut Par am | NT)
BEG N
DECLARE z | NT;
SET z = inQut Param + 1;
SET i nQut Param = z;

SELECT i nput Par am

SELECT CONCAT(' zyxw , i nput Param;
END

To usethe denoSp procedure with Connector/J, follow these steps:

1. Preparethe calable statement by using Connect i on. prepareCal | () .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the paramet-
er placeholders are not optional:

Example 4. Using Connecti on. prepareCal | ()

28

http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html

MySQL Connector/J

inmport java.sqgl.Callabl eStatenent;

Prepare a call to the stored procedure 'denpSp'
with two paraneters

Notice the use of JDBC-escape syntax ({call ...})

~————
~————

Cal | abl eStat ement cStmt = conn.prepareCall ("{call demoSp(?, ?)}");

cStnt.setString(l, "abcdefg");

Note

Connecti on. prepareCal | () isan expensive method, due to the metadata retrieval
that the driver performs to support output parameters. For performance reasons, you should
try to minimize unnecessary callsto Connect i on. prepareCal | () by reusing

Cal | abl eSt at enent instancesin your code.

Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you cre-
ated the stored procedure), JDBC requires that they be specified before statement execution using
thevariousr egi st er Qut put Par anet er () methodsintheCal | abl eSt at enent inter-
face:

Example 5. Registering output parameters
import java.sql. Types;

Connector/J supports both naned and i ndexed
out put parameters. You can register output
paraneters using either method, as well

as retrieve output paraneters using either
nmet hod, regardl ess of what nethod was

used to register them

The foll owi ng exanpl es show how to use
the various nmethods of registering

out put paranmeters (you shoul d of course
use only one registration per paraneter).

— e~ — —
—~— e e e e e e

Regi sters the second paraneter as output, and
uses the type 'I NTEGER for values returned from
get Obj ect ()

—_~———
—_~———

cStnt.registerQutParaneter (2, Types.|NIEGER);

Regi sters the named paraneter 'inQutParan, and
uses the type 'I NTEGER for values returned from
get Obj ect ()

——— — —
——— — —

cStnt.registerQutParaneter("inQutParant, Types.|NTEGER);

29

MySQL Connector/J

Set the input parameters (if any exist)

Input and infout parameters are set asfor Pr epar edSt at enent objects. However,
Cal | abl eSt at enent also supports setting parameters by name:

Example 6. Setting Cal | abl eSt at enent input parameters

Set a paraneter by index

~——
~——

cStnt.setString(l, "abcdefg");

/1

// Aternatively, set a paraneter using

/'l the paraneter nane

/1

cStnt.setString("inputParanmeter”, "abcdefg");
I

// Set the '"in/out' paraneter using an index
/1

cStnt.setlnt(2, 1);

Al ternatively, set the 'in/out' paraneter
by name

—_————
—_————

cStnt.setlnt("inQutParan', 1);

Executethe Cal | abl eSt at enent , and retrieve any result sets or output parameters.

Although Cal | abl eSt at enrent supports calling any of the St at enent execute methods
(execut eUpdat e(),execut eQuery() orexecut e()), the most flexible method to call is
execut e(), asyou do not need to know ahead of time if the stored procedure returns result sets:

Example 7. Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();

Process all returned result sets

~——
~——

whil e (hadResults) {
ResultSet rs = cStnt.getResultSet();

/'l process result set
hadResul ts = rs. get MoreResul ts();

trieve output parameters

Re
Connector/J supports both index-based and
nane- based retri eval

~—————
~————

int outputValue = cStnmt.getlnt(2); // index-based

30

MySQL Connector/J

out putValue = cStnt.getInt("inQutParani); // name-based

1.5.1.4. Retrieving AUTO_| NCREMENT Column Values

Before version 3.0 of the JIDBC API, there was no standard way of retrieving key values from databases
that supported auto increment or identity columns. With older JDBC drivers for MySQL, you could al-
ways use a MySQL -specific method on the St at enent interface, or issue the query SELECT

LAST_I NSERT_I () after issuing an | NSERT to atable that had an AUTO_| NCREMENT key. Using
the MySQL -specific method call isn't portable, and issuing a SELECT to get the AUTO_| NCREMENT
key's value requires another round-trip to the database, which isn't as efficient as possible. The following
code snippets demonstrate the three different ways to retrieve AUTO | NCREMENT values. First, we
demonstrate the use of the new JDBC-3.0 method get Gener at edKeys() which isnow the preferred
method to use if you need to retrieve AUTO_| NCREMENT keys and have access to JDBC-3.0. The
second example shows how you can retrieve the same value using a standard SELECT

LAST | NSERT | D() query. Thefinal example shows how updatable result sets can retrieve the
AUTO_| NCREMENT value when using thei nser t Row() method.

Example 8. Retrieving AUTO_| NCREMENT column values using
St at enent . get Gener at edKeys()

Statenent stnt = null;
ResultSet rs = null;

try {

/

/] Create a Statenent instance that we can use for
/1 '"normal' result sets assunming you have a

/] Connection 'conn' to a MySQL dat abase al r eady
/1 avail abl e

stnt = conn. createSt at ement (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sgl . Resul t Set . CONCUR_UPDATABLE) ;

—~——

/
/ Issue the DDL queries for the table for this exanple
/

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE autol ncTutorial ("

+ "priKey INT NOT NULL AUTO | NCREMENT, "

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

Insert one row that will generate an AUTO | NCREMENT
key in the 'priKey' field

~———
~———

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutorial (dataField) "
+ "values ("Can | Get the Auto Increnment Field?)",
St at enment . RETURN_GENERATED_KEYS) ;

Exanpl e of using Statenent.get Gener at edKeys()

—~———
—~———

to retrieve the value of an auto-increnent
val ue
i nt autol ncKeyFromApi = -1;

rs = stnt.get Generat edKeys();

31

MySQL Connector/J

if (rs.next())
aut ol ncKeyFromApi = rs.getlnt(1);
} else {

/1 throw an exception from here

rs.close();
rs = null;

Systemout. println("Key returned from get Gener at edKeys():"
+ aut ol ncKeyFr omApi) ;
} finally {

if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/] ignore

}

if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
) /] ignore

Example 9. Retrieving AUTO_| NCREMENT column values using SELECT
LAST_| NSERT_| IX()

Statenent stnt = null;

Resul tSet rs = null;

try {

/1

/Il Create a Statenent instance that we can use for
/1l "normal' result sets.

stnt = conn.createStatenment();

| ssue the DDL queries for the table for this exanple

—~——

/
/
/

st nt . execut eUpdat e(" DROP TABLE | F EXI STS autol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE autol ncTutorial ("

+ "pri Key |NT NOT NULL AUTO | NCREMENT, "

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

Insert one row that will generate an AUTO | NCREMENT
key in the 'priKey' field

~———
~———

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutorial (dataField) "
+ "values ('Can | Get the Auto Increnent Field?)");

I

/1 Use the MySQL LAST_I NSERT_I D()

/1 function to do the same thing as get Gener at edKeys()
I/

i nt autol nckeyFronfunc = -1;

rs = stnt.executeQuery(" SELECT LAST_INSERT_ID()");

if (rs.next()) {
aut ol ncKeyFronfunc = rs.getlnt(1);

32

MySQL Connector/J

} else {

/'l throw an exception from here
}
rs.close();

Systemout.println("Key returned from" +
"' SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onfunc) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/1 ignore
}
if (stnt !'=null) {
try {

stnt.cl ose();
} catch (SQLException ex) {
/1l ignore

Example 10. Retrieving AUTO | NCREMENT column values in Updat abl e Resul t Set s

Statenent stnt = null;
ResultSet rs = null;

try {

Create a Statenent instance that we can use for
"normal ' result sets as well as an 'updatabl e’
one, assum ng you have a Connection 'conn' to
a MySQL dat abase al ready avail abl e

—~———
—~———

stnmt = conn. createStatenent(java. sql . Resul t Set. TYPE_FORWARD_ONLY,
java. sql . Resul t Set . CONCUR_UPDATABLE) ;

—~——
—~——

I ssue the DDL queries for the table for this exanple

st nt . execut eUpdat e(" DROP TABLE | F EXI STS autol ncTutorial");
st nt . execut eUpdat e(

" CREATE TABLE autol ncTutorial ("

+ "priKey INT NOT NULL AUTO_ | NCREMENT, "

+ "dataFi el d VARCHAR(64), PRI MARY KEY (prikKey))");

Exanpl e of retrieving an AUTO | NCREMENT key
froman updatabl e result set

~———
~———

rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM aut ol ncTutorial ");

rs. moveTol nsert Row() ;

rs.updateString("dataFi el d*, "AUTO | NCREMENT here?");
rs.insertRow);

I

/1 the driver adds rows at the end

I

rs.last();

33

MySQL Connector/J

We shoul d now be on the row we just inserted

~——
~——

i nt autol nckeyFronRS = rs.getlnt("priKey");
rs.close();
rs = null;

Systemout. println("Key returned for inserted row "
+ aut ol ncKeyFr onRS) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/] ignore
}
if (stnt !'=null) {
try {

stnt.cl ose();
} catch (SQLException ex) {
) /] ignore

}
}

When you run the preceding example code, you should get the following output: Key returned from

get Gener at edKeys() : 1 Key returned from SELECT LAST | NSERT | D() : 1 Key returned for
inserted row: 2 Y ou should be aware, that at times, it can be tricky to use the SELECT

LAST | NSERT | D() query, asthat function's value is scoped to a connection. So, if some other query
happens on the same connection, the value will be overwritten. On the other hand, the get Gener -

at edKeys() method isscoped by the St at enent instance, so it can be used even if other queries
happen on the same connection, but not on the same St at enent instance.

1.5.2. Using Connector/J with J2EE and Other Java Frameworks
This section describes how to use Connector/Jin several contexts.
1.5.2.1. General J2EE Concepts
This section provides general background on J2EE concepts that pertain to use of Connector/J.
1.5.2.1.1. Understanding Connection Pooling

Connection pooling is atechnique of creating and managing a pool of connections that are ready for use
by any thread that needs them.

This technique of pooling connectionsis based on the fact that most applications only need athread to
have access to a JDBC connection when they are actively processing a transaction, which usually take
only milliseconds to complete. When not processing a transaction, the connection would otherwise sit
idle. Instead, connection pooling allows the idle connection to be used by some other thread to do useful
work.

In practice, when athread needs to do work against aMySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returnsit to the pool, so
that it may be used by any other threads that want to use it.

When the connection isloaned out from the poal, it is used exclusively by the thread that requested it.

34

MySQL Connector/J

From a programming point of view, it isthe same asif your thread called Dr i ver Man-
ager . get Connecti on() everytimeit needed a JDBC connection, however with connection pool-
ing, your thread may end up using either a new, or already-existing connection.

Connection pooling can greatly increase the performance of your Java application, while reducing over-
all resource usage. The main benefits to connection pooling are:

* Reduced connection creation time

Although thisis not usually an issue with the quick connection setup that MySQL offers compared
to other databases, creating new JDBC connections still incurs networking and JDBC driver over-
head that will be avoided if connections are recycled.

» Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JD-
BC connection, allowing you to use straight-forward JDBC programming techniques.

» Controlled resource usage

If you don't use connection pooling, and instead create a new connection every time a thread needs
one, your application's resource usage can be quite wasteful and lead to unpredictable behavior un-
der load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so
forth) on both the client and server side. Every connection limits how many resources there are available
to your application as well asthe MySQL server. Many of these resources will be used whether or not
the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the
point where your application will start to fail rather than just run slower.

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Op-
tional interfaces, and all major application servers have implementations of these APIsthat work fine
with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
viathe Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 11. Using a connection pool with a J2EE application server

i mport java.sql.Connecti on;
i mport java.sql.SQLExcepti on;
import java.sql.Statenment;

i mport javax.nam ng. | nitial Context;
i nport javax. sql . Dat aSour ce;

public class M/Servl etJspOE b {
public void doSonet hing() throws Exception {

/

Create a JNDI Initial context to be able to

| ookup the Dat aSource

In production-Ilevel code, this should be cached as
an I nstance or static variable, as it can
be quite expensive to create a JNDI context.

* %k 3k 3k 3k %k Ok X O

35

MySQL Connector/J

Note: This code only works when you are using servlets
or EJBs in a J2EE application server. If you are

usi ng connection pooling in standal one Java code, you

wi |l have to create/configure datasources using whatever
mechani snms your particul ar connection pooling library
/pr ovi des.

ok ok Ok Ok K *

Initial Context ctx = new Initial Context();

/
Lookup the DataSource, which will be backed by a pool
that the application server provides. DataSource Instances
are al so a good candidate for caching as an instance
variabl e, as JNDI | ookups can be expensive as well.

/

* ok ok ok ok Ok

Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/ j dbc/ MySQLDB") ;

The followi ng code is what would actually be in your
Servlet, JSP or EJB 'service' nethod...where you need
to work with a JDBC connecti on.

/

EE

Connection conn = null;
Statenent stnt = null;

try {
conn = ds. get Connection();

/*

* Now, use normal JDBC programming to work with

* MySQ., nmeking sure to close each resource when you're
* finished with it, which allows the connection pool

* resources to be recovered as quickly as possible

*

/

stnmt = conn.createStatenment();
stnt . execut e(" SOVE SQL QUERY");

stnt.cl ose();
= null;

stnt =
conn. cl ose();
conn = null;
} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (sql exception sqglex) {
/] ignore -- as we can't do anything about it here
stnt = null;
if (conn != null) {
try
conn. cl ose();
} catch (sql exception sqglex) {
/] ignore -- as we can't do anything about it here
conn = nul | ;
}
}

As shown in the example above, after obtaining the JINDI Initial Context, and looking up the DataSource,

36

MySQL Connector/J

the rest of the code should look familiar to anyone who has done JDBC programming in the past.

The most important thing to remember when using connection pooling is to make sure that no matter
what happensin your code (exceptions, flow-of-control, and so forth), connections, and anything created
by them (such as statements or result sets) are closed, so that they may be re-used, otherwise they will be
stranded, which in the best case means that the MySQL server resources they represent (such as buffers,
locks, or sockets) may be tied up for some time, or worst case, may betied up forever.

What's the Best Size for my Connection Pool ?

Aswith al other configuration rules-of-thumb, the answer is: it depends. Although the optimal size de-
pends on anticipated load and average database transaction time, the optimum connection pool sizeis
smaller than you might expect. If you take Sun's Java Petstore blueprint application for example, a con-
nection pool of 15-20 connections can serve arelatively moderate load (600 concurrent users) using
MySQL and Tomcat with response times that are acceptable.

To correctly size aconnection pool for your application, you should create load test scripts with tools
such as Apache JMeter or The Grinder, and load test your application.

An easy way to determine a starting point isto configure your connection pool's maximum number of
connections to be unbounded, run aload test, and measure the largest amount of concurrently used con-
nections. Y ou can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

1.5.2.2. Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://jakarta.apache.org/tomcat/tomcat-5.0-doc/j ndi-datasource-exampl es-howto.html which is current at
the time this document was written.

First, install the .jar file that comes with Connector/Jin $CATALI NA_HOVE/ cormon/ | i b sothatitis
available to all applicationsinstalled in the container.

Next, Configure the JNDI DataSource by adding a declaration resource to
$CATALI NA_HOVE/ conf/ server . xnl inthe context that defines your web application:

<Context>

<Resour ce nane="j dbc/ My SQLDB"
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >

<!-- The nane you used above, nust match _exactly_ here!

The connection pool will be bound into JNDI with the name
"java:/ conp/ env/jdbc/ My SQ.DB"
-->

<Resour cePar ans nane="j dbc/ MySQLDB" >
<par anet er >
<nane>f act or y</ nane>
<val ue>or g. apache. cormons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<l-- Don't set this any higher than max_connecti ons on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<par anet er >
<nane>maxAct i ve</ name>
<val ue>10</ val ue>

</ par anet er >

<l-- You don't want to many idl e connections hangi ng around
if you can avoid it, only enough to soak up a spike in
the | oad -->

37

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html

MySQL Connector/J

<par anet er >
<nane>nax| dl e</ nane>
<val ue>5</ val ue>

</ par anet er >

<l-- Don't use autoReconnect=true, it's going away eventually
and it's a crutch for ol der connection pools that coul dn't
test connections. You need to deci de whet her your application
is supposed to deal with SQ.Exceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>SELECT 1</val ue>

</ par anet er >

<l-- The nobst conservative approach is to test connections
before they're given to your application. For nost applications
this is okay, the query used above is very snall and takes
no real server resources to process, other than the time used
to traverse the network.

If you have a high-load application you'll need to rely on
sonet hing el se. -->

<par anet er >
<nane>t est OnBor r ow</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<l-- OGherwise, or in addition to testOnBorrow, you can test
whi | e connections are sitting idle -->

<par anet er >
<nane>t est Wi | el dl e</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<l-- You have to set this value, otherw se even though
you' ve asked connections to be tested while idle
the idle evicter thread will never run -->

<par anet er >
<nane>t i neBet weenEvi cti onRunsM | | i s</ nane>
<val ue>10000</ val ue>

</ par anet er >

<l-- Don't allow connections to hang out idle too | ong
never |onger than what wait_tinmeout is set to on the
server...A few mnutes or even fraction of a mnute
is sonetimes okay here, it depends on your application
and how nuch spikey load it will see -->

<par anet er >
<nane>ni nEvi ct abl el dl eTi neM | | i s</ nane>
<val ue>60000</ val ue>

</ par anet er >

<l-- Usernane and password used when connecting to MySQL -->

<par anet er >
<nane>user nane</ nane>
<val ue>soneuser </ val ue>
</ par anet er >

<par anet er >
<nanme>passwor d</ nane>
<val ue>sonepass</ val ue>
</ par anet er >

<l-- Cdass nane for the Connector/J driver -->
<par anet er >

<name>dri ver O assName</ name>

<val ue>com nysgql . j dbc. Dri ver </ val ue>
</ par anet er >

<!-- The JDBC connection url for connecting to MySQL, notice

38

MySQL Connector/J

that if you want to pass any other MySQL-specific paraneters
you shoul d pass them here in the URL, setting them using the
paraneter tags above will have no effect, you will also

need to use &anp; to separate paraneter values as the
anpersand is a reserved character in XM -->

<par anet er >

<nane>ur | </ name>

<val ue>j dbc: nysql : / /| ocal host : 3306/t est </ val ue>
</ par anet er >

</ Resour cePar ans>
</ Cont ext >

In general, you should follow the installation instructions that come with your version of Tomcat, as the
way you configure datasources in Tomcat changes from time-to-time, and unfortunately if you use the
wrong syntax in your XML file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot |oad JDBC driver class 'null ' SQL
state: null

1.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server,
copy the .jar file that comes with Connector/Jto thel i b directory for your server configuration (which
isusually caled def aul t). Then, in the same configuration directory, in the subdirectory named de-
ploy, create a datasource configuration file that ends with "-ds.xml”, which tells JBoss to deploy thisfile
as aJDBC Datasource. The file should have the following contents:

<dat asour ces>
<l ocal -t x- dat asour ce>
<l-- This connection pool will be bound into JNDI with the nane
"java:/ M/SQLDB" -->

<j ndi - name>MySQLDB</ j ndi - name>

<connecti on-url >j dbc: nmysql : / /| ocal host : 3306/ dbnane</ connecti on-url >
<dri ver-cl ass>com nysql . jdbc. Driver</driver-class>

<user - nane>user </ user - nanme>

<passwor d>pass</ passwor d>

<m n- pool - si ze>5</ m n- pool - si ze>

<l-- Don't set this any higher than max_connecti ons on your
M/SQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<max- pool - si ze>20</ max- pool - si ze>

<!-- Don't allow connections to hang out idle too |ong,
never |onger than what wait_tineout is set to on the
server...A few minutes is usually okay here,
it depends on your application
and how nmuch spikey load it will see -->

<i dl e-ti meout - m nut es>5</i dl e-ti meout - m nut es>

<!-- |f you're using Connector/J 3.1.8 or newer, you can use
our inplenentation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-nane>com nysql . jdbc.integration.jboss. Ext endedM/sql Excepti onSort er </ exc
<val i d- connect i on- checker - cl ass- nanme>com nysql . j dbc. i nt egrati on. j boss. Mysql Val i dConnect i onCheck

</l ocal -t x- dat asour ce>
</ dat asour ces>

1.5.3. Common Problems and Solutions

There are afew issues that seem to be commonly encountered often by users of MySQL Connector/J.
This section deals with their symptoms, and their resolutions.

39

MySQL Connector/J

Questions

e 1.5.3.1: When | try to connect to the database with MySQL Connector/J, | get the following excep-
tion:

SQLException: Server configuration denies access to data source
SQLState: 08001
Vendor Error: O

What's going on? | can connect just fine with the MySQL command-line client.
* 1.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

e 1.5.3.3: I'mtrying to use MySQL Connector/Jin an applet or application and | get an exception sim-
ilar to:

SQ.Exception: Cannot connect to MySQL server on host: 3306.
Is there a MySQ. server running on the machi ne/ port you
are trying to connect to?

(java. security. AccessCont rol Excepti on)
SQ.State: 08S01
VendorError: 0O

* 15.3.4: | have a servlet/application that works fine for aday, and then stops working overnight

e 1.5.3.5: I'mtrying to use JDBC-2.0 updatable result sets, and | get an exception saying my result set
is not updatable.

* 1.5.3.6: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection para-
mters are correct.

Questionsand Answers

1.5.3.1: When | try to connect to the database with MySQL Connector/J, | get the following excep-
tion:
SQ.Exception: Server configuration denies access to data source

SQ.St at e: 08001
VendorError: O

What'sgoing on? | can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Do-
main Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in
MySQL server will useits grant tables to determine whether the connection should be allowed.

Y ou must add the necessary security credentials to the MySQL server for this to happen, using the
GRANT statement to your MySQL Server. See GRANT Syntax
[http://dev.mysgl.com/doc/ref man/5.0/en/grant.html], for more information.

Note

Testing your connectivity with the mysgl command-line client will not work unless you
add the - - host flag, and use something other than | ocal host for the host. The mysq|l
command-line client will use Unix domain socketsif you use the special hostname| ocal -
host . If you are testing connectivity to| ocal host ,use127. 0. 0. 1 asthe hosthame in-
stead.

| Warning

40

http://dev.mysql.com/doc/refman/5.0/en/grant.html

MySQL Connector/J

Changing privileges and permissions improperly in MySQL can potentially cause your serv-
er installation to not have optimal security properties.

1.5.3.2: My application throws an SQL Exception 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

» The Connector/J driver is not in your CLASSPATH, see Section 1.2, “Connector/J Installation”.
» Theformat of your connection URL isincorrect, or you are referencing the wrong JDBC driver.

» When using DriverManager, thej dbc. dri ver s system property has not been populated with the
location of the Connector/J driver.

15.3.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception
similar to:
SQLExcepti on: Cannot connect to MySQL server on host: 3306.

Is there a MySQ. server runni ng on the nachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)
SQLState: 08S01
Vendor Error: 0O

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" op-
tion set, or your MySQL server has afirewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the
.classfilesfor the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for thisto work. This also means that you will not be able to test applets
from your local file system, you must always deploy them to aweb server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix
domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the
"--skip-networking" flag, or if it isfirewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of
MySQL server does this for example), you need to comment it out in the file /etc/mysgl/my.cnf or /
etc/my.cnf. Of course your my.cnf file might also exist in the dat a directory of your MySQL server, or
anywhere el se (depending on how MySQL was compiled for your system). Binaries created by MySQL
AB alwayslook in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you
will need to have the firewall configured to allow TCP/IP connections from the host where your Java
code isrunning to the MySQL server on the port that MySQL islistening to (by default, 3306).

1.5.3.4: | have a servlet/application that worksfinefor a day, and then stops working over night

MySQL closes connections after 8 hours of inactivity. Y ou either need to use a connection pool that
handles stale connections or use the "autoReconnect” parameter (see Section 1.4.1, “ Driver/Datasource
Class Names, URL Syntax and Configuration Properties for Connector/J").

Also, you should be catching SQL Exceptions in your application and dealing with them, rather than
propagating them all the way until your application exits, thisisjust good programming practice.
MySQL Connector/Jwill set the SQL State (seej ava. sql . SQLExcepti on. get SQLSt at e() in
your APIDOCS) to "08S01" when it encounters network-connectivity issues during the processing of a
query. Your application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

41

MySQL Connector/J

Example 12. Example of transaction with retry logic

publ i c void doBusi nessOp() throws SQLException {
Connection conn = null;
Statenent stnt = null;
Resul tSet rs = null;

I/

/] How many tines do you want to retry the transaction
/1 (or at least _getting_ a connection)?

/1

in

t retryCount = 5;
bool ean transacti onConpl eted = fal se;

do {

try {

conn = get Connection(); // assume getting this froma
/] javax.sql.DataSource, or the
Il

ava. sql . Dri ver Manager

conn. set Aut oCommi t (f al se);

Ckay, at this point, the "retry-ability' of the
transaction really depends on your application |ogic
whet her or not you're using autocommt (in this case
not), and whether you're using transacational storage
engi nes

/

/

/

/

/

/

/

/ For this exanple, we'll assune that it's _not_ safe
/ to retry the entire transaction, so we set retry

/ count to O at this point

/

/ 1f you were using exclusively transaction-safe tabl es,
/ or your application could recover froma connection going
/ bad in the mddle of an operation, then you woul d not
/ touch 'retryCount' here, and just let the | oop repeat
/ until retryCount ==

/

etryCount = O;

stnmt = conn.createStatenent();

String query = "SELECT foo FROM bar ORDER BY baz";

rs = stnt.executeQuery(query);

\}Alnile (rs.next()) {

rs.close();
rs = null;

stnt.cl ose();
stnmt = null;

conn. comm t () ;
conn. cl ose();
conn = nul | ;

transacti onConpl eted = true;
} catch (SQLException sql Ex) {
The two SQL states that are 'retry-able' are 08S01
for a communications error, and 40001 for deadl ock.

Only retry if the error was due to a stal e connecti on,
communi cati ons probl em or deadl ock

—~————
—~————

String sql State = sql Ex. get SQLStat e();

if ("08S01".equal s(sql State) || "40001".equal s(sql State)) {
retryCount--;
} else {

42

MySQL Connector/J

retryCount = O;

} fi%ally{
if (rs!=null) {
try {
rs.close();

} catch (SQLException sqgl Ex) {
/1 You'd probably want to log this .

}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sqgl Ex) {
/1 You'd probably want to log this as well
}
if (conn !=null) {
try {
I
/1l 1f we got here, and conn is not null, the
/'l transaction should be rolled back, as not
/1 all work has been done
try {
conn. rol | back();
} finally {
conn. cl ose();
}
} catch (SQLException sqgl Ex) {
I/
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/] pass it up the stack, rather than just
/1 logging it.
t hrow sql Ex;
}
}

} while (!transacti onConpl eted && (retryCount > 0));

Note

Use of theaut oReconnect option is not recommended because there is no safe method
of reconnecting to the MySQL server without risking some corruption of the connection
state or database state information. Instead, you should use a connection pool which will en-
able your application to connect to the MySQL server using an available connection from
the pool. Theaut oReconnect facility is deprecated, and may be removed in afuture re-
lease.

1.5.3.5: I'm trying to use JDBC-2.0 updatableresult sets, and | get an exception saying my result
set isnot updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that
have come from queries on tables that have at |east one primary key, the query must select every
primary key and the query can only span one table (that is, no joins). Thisis outlined in the JDBC spe-
cification.

Note that thisissue only occurs when using updatable result sets, and is caused because Connector/Jis
unable to guarantee that it can identify the correct rows within the result set to be updated without hav-
ing a unique reference to each row. Thereis no requirement to have aunique field on atableif you are
using UPDATE or DELETE statements on a table where you can individually specify the criteriato be
matched using a WHERE clause.

1.5.3.6: | cannot connect to the MySQL server using Connector/J, and I'm surethe connection

43

MySQL Connector/J

paramters are correct.

Make sure that the ski p- net wor ki ng option has not been enabled on your server. Connector/J must
be able to communicate with your server over TCP/IP, named sockets are not supported. Also ensure
that you are not filtering connections through a Firewall or other network security system. For more in-
formaiton, seeCan't connect to [local] MySQL server

[http://dev.mysql.com/doc/ref man/5.0/en/can-not-connect-to-server.html].

1.6. Connector/J Support
1.6.1. Connector/J Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/J re-
lated issues, you can get help from experienced users by using the MySQL and Java mailing list.
Archives and subscription information is available online at http://lists.mysgl.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit ht-
tp://lists.mysgl.com/. See MySQL Mailing Lists
[http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html].

Community support from experienced usersis a so available through the JIDBC Forum
[http://forums.mysqgl.com/list.php?39]. Y ou may also find help from other users in the other MySQL
Forums, located at http://forums.mysgl.com. See MySQL Community Support at the MySQL Forums
[http://dev.mysql.com/doc/refman/5.1/en/forums.html].

1.6.2. How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you
will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to security_at_mysqgl.com
[mailto:security _at_mysgl.com].

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing afull test case for the bug, makesit very likely that we will fix
the bug in the next release.

This section will help you write your report correctly so that you don't waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysqgl.com/. Any
bug that we are able to repeat has a high chance of being fixed in the next MySQL rel ease.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for usto respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details don't matter.

A good principleisthis: If you are in doubt about stating something, stateit. It is faster and less trouble-
some to write a couple more linesin your report than to wait longer for the answer if we must ask you to
provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/Jisinstalled (including the
JVM version, and the platform type and version number that MySQL itself isinstalled on).

http://dev.mysql.com/doc/refman/5.0/en/can-not-connect-to-server.html
http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html
http://bugs.mysql.com/
mailto:security_at_mysql.com
http://bugs.mysql.com/

MySQL Connector/J

Thisis highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?’ Then we find that the feature requested
wasn't implemented in that MySQL version, or that a bug described in areport has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at al possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party
classes.

To streamline this process, we ship a base class for testcases with Connector/J, named

‘com nysql . jdbc. util.BaseBugReport'. To create atestcase for Connector/J using this class,
create your own class that inheritsfromcom nysql . j dbc. uti | . BaseBugReport and override
the methods set Up() ,t ear Down() andrunTest ().

Intheset Up() method, create code that creates your tables, and populates them with any data needed
to demonstrate the bug.

Inther unTest () method, create code that demonstrates the bug using the tables and data you created
inthe set Up method.

Inthet ear Down() method, drop any tablesyou created inthe set Up() method.

In any of the above three methods, you should use one of the variants of the get Connecti on()
method to create a JDBC connection to MySQL :

e get Connecti on() - Providesaconnection tothe JDBC URL specifiedinget Url () . If acon-

nection already exists, that connection is returned, otherwise a new connection is created.

e get NewConnecti on() - Usethisif you need to get a new connection for your bug report (i.e.
there's more than one connection involved).

e« getConnection(String url) -Returnsaconnection using the given URL.

 getConnection(String url, Properties props) - Returnsaconnection using the
given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test’, override the method
getUrl () aswell.

Usetheassert True(bool ean expression) andassert True(String fail ureMes-
sage, bool ean expressi on) methods to create conditions that must be met in your testcase
demonstrating the behavior you are expecting (vs. the behavior you are observing, which iswhy you are
most likely filing a bug report).

Finally, create anai n() method that creates a new instance of your testcase, and callsther un meth-
od:

public static void main(String[] args) throws Exception {
new MyBugReport ().run();

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

1.6.3. Connector/J Change History

45

http://bugs.mysql.com/

MySQL Connector/J

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See
MySQL Connector/J Change History [http://dev.mysgl.com/doc/ref man/5.1/en/cj-news.html].

46

http://dev.mysql.com/doc/refman/5.1/en/cj-news.html

	1. MySQL Connector/J
	Table of Contents
	1.1. Connector/J Versions
	1.1.1. Java Versions Supported

	1.2. Connector/J Installation
	1.2.1. Installing Connector/J from a Binary Distribution
	1.2.2. Installing the Driver and Configuring the CLASSPATH
	1.2.3. Upgrading from an Older Version
	1.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	1.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	1.2.4. Installing from the Development Source Tree

	1.3. Connector/J Examples
	1.4. Connector/J (JDBC) Reference
	1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	1.4.2. JDBC API Implementation Notes
	1.4.3. Java, JDBC and MySQL Types
	1.4.4. Using Character Sets and Unicode
	1.4.5. Connecting Securely Using SSL
	1.4.6. Using Master/Slave Replication with ReplicationConnection

	1.5. Connector/J Notes and Tips
	1.5.1. Basic JDBC Concepts
	1.5.1.1. Connecting to MySQL Using the DriverManager Interface
	1.5.1.2. Using Statements to Execute SQL
	1.5.1.3. Using CallableStatements to Execute Stored Procedures
	1.5.1.4. Retrieving AUTO_INCREMENT Column Values

	1.5.2. Using Connector/J with J2EE and Other Java Frameworks
	1.5.2.1. General J2EE Concepts
	1.5.2.1.1. Understanding Connection Pooling

	1.5.2.2. Using Connector/J with Tomcat
	1.5.2.3. Using Connector/J with JBoss

	1.5.3. Common Problems and Solutions

	1.6. Connector/J Support
	1.6.1. Connector/J Community Support
	1.6.2. How to Report Connector/J Bugs or Problems
	1.6.3. Connector/J Change History

