CTest

Overview
CTest is a C test harness. It provides a test runner and a set of assert macros that can be used to write tests.
CTest is designed to:
· Only use C for writing tests in order to minimize mixing C and C++ (sometimes the mix is just not desired)
· Maximize portability, thus trying to avoid at any costs compiler implementation specific features.
Using CTest
The following steps are required in order to use CTest:
· Include CTest.h in a .c file
· Write the tests in the .c file as part of a test suite
· Link the test runner in your executable
· As part of main (or any other function), execute the test suite
The first test
The below example shows a simple test written by using CTest:
#include "CTest.h"
#include "SomeUnitUnderTest.h"

CTEST_BEGIN_TEST_SUITE(SimpleTestSuiteOneTest)

CTEST_FUNCTION(Test1)
{
 // arrange

 // act
 int x = SomeFunction();

 // assert
 CTEST_ASSERT_ARE_EQUAL(int, 42, x, int);
}

CTEST_END_TEST_SUITE(SimpleTestSuiteOneTest)

In order to run the suite, the main function would contain:
#include "CTest.h"

int main(int argc, char* argv[])
{
 CTEST_RUN_TEST_SUITE(SimpleTestSuiteOneTest);	Comment by Dan Cristoloveanu: 3) RUN_TEST_SUITE should return the number of failed tests. This is to facilitate automation. Because in a bacthfile you might want to use %ERRORLEVEL% to see "if any tests failed, I am going to grab the test output". In the example, it either doesn't return, either it should have a (void)in front when it returns something (yeah, macros can almost have return values, just like functions...)	Comment by Dan Cristoloveanu: Yep, we could add this, but let’s add it when needed. I suspect that the way the logs will be analyzed is by looking for !!! FAILED !!!

 return 0;
}

The results would look like:
[image:]
Test suites
One test suite is supported per translation unit.
The beginning of a test suite is marked by the macro CTEST_BEGIN_TEST_SUITE(suiteName).
The end of a test suite is marked by the macro CTEST_END_TEST_SUITE(suiteName).
To run all the tests in a test suite the following macro can be used:
CTEST_RUN_TEST_SUITE(suiteName{,failedTestCount});
The execution order of the tests in a test suite is not guaranteed. Tests are executed sequentially.

The failedTestCount for CTEST_RUN_TEST_SUITE is optional. If specified, the number of failed tests will be summed up in the failedTestCount variable, that is passed as argument.
Fixtures
CTEST_SUITE_INITIALIZE	Comment by Dan Cristoloveanu: 6) Also, inquiring minds want to know if scope of this fixture propagates into CTEST_FUNCTION. As in:

CTEST_SUITE_INITIALIZE()
{
 int t=3;
}

CTEST_FUNCTION(Test1)
{
 t=4; /*does this compile?*/
}

Same question for CTEST_FUNCTION_INITIALIZE! (please, PLEASE, PLEASE, say the answer is "yes").	Comment by Dan Cristoloveanu: It’s no for now, sorry.
This special fixture is executed before all the tests in the test suite. All resources allocated in CTEST_SUITE_INITIALIZE should be freed in CTEST_SUITE_CLEANUP.
CTEST_SUITE_INITIALIZE()
{
 /* Some init code */
}
CTEST_SUITE_CLEANUP
This special fixture is executed after all the tests in the test suite.
CTEST_SUITE_CLEANUP()
{
 /* Free resources allocated in CTEST_SUITE_INITIALIZE */
}

CTEST_FUNCTION_INITIALIZE
This special fixture is executed before calling each test function in the test suite. All resources allocated in CTEST_FUNCTION_INITIALIZE should be freed in CTEST_FUNCTION_CLEANUP.
CTEST_FUNCTION_INITIALIZE()	Comment by Dan Cristoloveanu: 7) I wants to know if a CTEST_FUNCTION can chose one fixture or the other. (doesn't look like, but there's always hope). And if not, please say there are plans to do so :)	Comment by Dan Cristoloveanu: No, but this is in plan, this one should be easily doable (as opposed to the scope ask above)
{
 /* Initialize specific things for each test function */
}
CTEST_FUNCTION_CLEANUP
This special fixture is executed after each test in the test suite.
CTEST_FUNCTION_CLEANUP()
{
 /* Free resources allocated in CTEST_FUNCTION_INITIALIZE */
}
Assert macros
Assert macros allow asserting various results and failing the tests if the asserted values/expressions fail.
By default if no assert macro fails a test, the test is reported as succesfull.
Two sets of assert macros are available: with and without a supplied assert text. The macros suffixed with _WITH_MSG behave the same like their counterpart without an assert text, but additionally their they print the supplied assert text (message) into the test run output.
The following assert macros without a supplied assert text are supported by CTEST:
CTEST_ASSERT_FAIL(message);
This macro fails the test without any messageand displays the message argument.
CTEST_ASSERT_ARE_EQUAL(type, expected, actual, type);
This macro compares the expected and actual values, assuming they are of type “type” and fails the test if the values are different.
CTEST_FUNCTION(Assert_Are_Equal_2_Ints_Fails)
{
 // arrange

 // act
 int x = SomeFunction();

 // assert
 CTEST_ASSERT_ARE_EQUAL(int, 42, x);

 CTEST_ASSERT_ARE_EQUAL((int)0, (int)1, int);
}
CTEST_ASSERT_ARE_NOT_EQUAL(type, expected, actual, type);
This macro compares the expected and actual values, assuming they are of type “type” and fails the test if the values are equal.
CTEST_FUNCTION(Assert_Are_Not_Equal_2_Ints_Fails)
{
 // arrange

 // act
 int x = SomeFunction();

 // assert
 CTEST_ASSERT_ARE_NOT_EQUAL(int, (int)0, (int)1x, int);
}
CTEST_ASSERT_IS_NULL(value);
This macro fails the test if the value argument is not NULL.
CTEST_FUNCTION(Assert_Is_NULL)
{
 // arrange

 // act
 void* x = SomeFunction();

 // assert
 CTEST_ASSERT_IS_NULL((void*)0x4242x);
}
CTEST_ASSERT_IS_NOT_NULL(value);
This macro fails the test if the value argument is NULL.
CTEST_FUNCTION(Assert_Is_Not_NULL)
{
 // arrange

 // act
 void* x = SomeFunction();

 // assert
 CTEST_ASSERT_IS_NOT_NULL((void*)0x4242x);
}
CTEST_ASSERT_IS_TRUE(expression);
This macro fails the test if expression evaluates to zero.
CTEST_FUNCTION(Assert_Is_True)
{
 // arrange

 // act
 int x = SomeFunction();

 // assert
 CTEST_ASSERT_IS_TRUE(x == 4);
}
CTEST_ASSERT_IS_FALSE(value);
This macro fails the test if expression evaluates to something different than zero.
CTEST_FUNCTION(Assert_Is_False)
{
 // arrange

 // act
 int x = SomeFunction();

 // assert
 CTEST_ASSERT_IS_FALSE(x != 4);
}
CTEST_FAIL_WITH_MSG(message);	Comment by Dan Cristoloveanu: 16) Give me a task to reduce the macro surface. I might be able to do that, if I struggle enough :) We'd get rid of the 2 versions: _WITH_MSG and "simple.	Comment by Dan Cristoloveanu: Sure, TFS188612.
Similar to CTEST_FAIL, but it also prints the additional message.
CTEST_ASSERT_ARE_EQUAL_WITH_MSG(type, expected, actual, type, message);
Similar to CTEST_ASSERT_ARE_EQUAL, but it also prints the additional message.
CTEST_ASSERT_ARE_NOT_EQUAL_WITH_MSG(type, expected, actual, type, message);
Similar to CTEST_ASSERT_ARE_NOT_EQUAL, but it also prints the additional message.
CTEST_ASSERT_IS_NULL_WITH_MSG(value, message);
Similar to CTEST_ASSERT_IS_NULL, but it also prints the additional message.
CTEST_ASSERT_IS_NOT_NULL_WITH_MSG(value, message);
Similar to CTEST_ASSERT_IS_NOT_NULL, but it also prints the additional message.
CTEST_ASSERT_IS_TRUE_WITH_MSG(expression, message);
Similar to CTEST_ASSERT_IS_TRUE, but it also prints the additional message.
CTEST_ASSERT_IS_FALSE_WITH_MSG(expression, message);
Similar to CTEST_ASSERT_IS_FALSE, but it also prints the additional message.
Specialized comparer and string conversion function
CTEST_COMPARE(niceType, type)
In order to allow comparing of specialized types (i.e. structures, etc.), the CTEST_COMPARE macro can be used:
typedef struct mystruct_tag
{
 unsigned char x;
} mystruct;

CTEST_COMPARE(mystruct_ptr, mystruct*)
{
 return (left->x != right->x)
}
A comparer is responsible for comparing 2 values (passed as arguments): left and right.
Notice the 2 expressions, left and right, which are of the type “type”. The comparer function should return a value different than zero if the left and right values are different; otherwise, if the values are equal it should return zero.
The niceType is a type nametypedef that (cannot contain any invalid characters like space, *, etc).
CTEST_TOSTRING(niceType, type, string, bufferSize, value)
CTEST_TOSTRING(mystruct_ptr, mystruct*, string, bufferSize, value)
{
 (void)snsprintf(dststring, bufferSize, "{ %d }", (int)value->x);
}

The function should print in dst the desired representation of value, where value is of type “type”, and dst is of type char*.
The niceType is a typedef (cannot contain any invalid characters like space, *, etc).The niceType is a type name that cannot contain any invalid characters like space, *, etc.
Out of the box supported types
The CTest harness supports out of the box string formatting and comparers for the following types:
· int
· char
· short
· long
· uint8_t
· int8_t
· uint16_t
· int16_t
· uint32_t
· int32_t
· uint64_t
· int64_t
· size_t
· float
· double
· [bookmark: _GoBack]long double
· char* (char_ptr)

image1.png

